
Tether	constants	
			mass	
			length	
			climber	mass	
			density	
			gravity	

Field	constants	
			axis	angle	
			rota4on	rate	
			strength	
			solar	pressure	
	

Dennis H. Wright	
Steven Avery	
John Knapman	
Martin Lades	
Paul Roubekas	
Peter A. Swan	

4me	
plot	

International Space Elevator Consortium ISEC Position Paper # 2017-1

 Design Considerations for a

Software Space Elevator Simulator	

	

	

	

	

																																										 	
	

	

	

Design	Considerations	for	a	Software																	

Space	Elevator	Simulator	
	

	

	

International	Space	Elevator	Consortium	

Autumn	2017	

	
	

	
	

Authors:	

Dennis	H.	Wright	

Steven	Avery	

John	Knapman	

Martin	Lades	

Paul	Roubekas	

Peter	A.	Swan	

	

	
	

	

	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 ii	

	

Design	Considerations	for	a	Software																												

Space	Elevator	Simulator	
	

	

	

	

	

	

	

	

	

	

Copyright	©	2018	by:	
	

Dennis	H.	Wright	

Steven	Avery	

John	Knapman	

Martin	Lades	

Paul	Roubekas	

Peter	A.	Swan	

	

	

All	rights	reserved,	including	the	rights	to	reproduce	

this	manuscript	or	portions	thereof	in	any	form.	

	

	

Published	by	Lulu.com	

	

dennis.wright@isec.org	

	

	

978-1-387-65437-6	

	

Printed	in	the	United	States	of	America	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 iii	

	

Preface	
	

The	vision	of	the	International	Space	Elevator	Consortium	(ISEC)	is	to	have	
	

																	“a	world	with	inexpensive,	safe,	routine,	and	efficient		

																			access	to	space	for	the	benefit	of	all	mankind.”	
	

As	a	necessary	step	towards	achieving	this	vision	ISEC	has	undertaken	a	

series	of	year-long	studies,	each	of	which	focuses	on	a	particular	aspect	of	the	

design	and	construction	of	an	operational	Earth-based	space	elevator.		The	

2017	study	deals	with	the	requirements	and	preliminary	design	aspects	of	a	

software	simulator	of	a	space	elevator	system.		The	goals	of	the	study	are	to	

identify	the	most	important	functions	of	such	a	simulator,	derive	from	these	

the	requirements	of	the	software	to	be	developed	and	outline	its	major	design	

characteristics.		The	resulting	study	report	will	serve	as	a	guideline	for	

development,	rather	than	a	detailed	blueprint,	so	that	the	software	can	evolve	

as	needs	arise.		The	end	goal	is	a	“gold	standard”	simulation	toolkit	to	be	used	

throughout	the	space	elevator	community.	

	

The	authors	of	this	report	wish	to	thank	the	members	of	ISEC	for	their	

support,	Robert	E.	‘Skip’	Penny,	Jr.	and	Peter	Robinson	for	their	contributions	

to	this	report,	and	the	attendees	of	the	2015,	2016	and	2017	ISEC	

Conferences	for	ideas	contributed	during	discussions.	

	

	

Signed:	 Dennis H. Wright
	 	 ISEC	Director	of	Studies,	Editor	

																									31	January	2018	

	

	

	
	

	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 iv	

Executive	Summary	

	

As	with	all	large,	modern	engineering	projects,	detailed	computer	simulations	

of	the	space	elevator	will	be	essential	during	its	design,	construction	and	

operational	phases.				

	

Within	the	context	of	these	phases,	this	study	enumerated	14	use	cases	which	

the	simulation	software	must	address,	ranging	from	3D	dynamics	and	

electrodynamics	calculations	of	space	elevator	motion,	to	the	effects	of	

payload	capture	and	release	at	various	points	along	the	tether,	to	the	effects	

of	friction	arising	from	the	interaction	of	the	space	elevator	climber	with	the	

tether.		Proceeding	from	these	use	cases,	requirements	were	imposed	on	the	

software	design	and	an	outline	for	its	development	was	sketched.	

	

A	central	part	of	the	design	is	a	general	math	and	physics	platform	which	can	

perform	the	many	calculations	required.		The	study	team	reviewed	seven	

such	platforms	and	chose	Mathematica	as	the	one	most	likely	to	meet	the	

needs	of	the	simulation.		To	maintain	an	open-source	option,	SageMath	was	

chosen	as	an	alternative	math/physics	platform.		Applications	specific	to	the	

space	elevator	simulation	will	be	built	on	top	of	these	platforms.	

		

The	simulation	software	must	be	developed	using	modern,	best	programming	

practices,	and	employing	Model-View-Controller	(MVC)	design	so	that	all	but	

a	few	of	the	many	details	of	particular	space	elevator	applications	are	hidden	

from	the	user.		The	simulation	must	also	be	modular	and	flexible	enough	to	

evolve	with	the	changing	needs	of	its	users.	

	

Finally,	the	software	must	be	made	available	to	a	variety	of	users	through	

various	distributed	computing	technologies	such	as	the	cloud.		Security	issues	

must	be	addressed	throughout	the	design	and	implementation	of	the	

software	and	maintenance	will	require	periodic	upgrades	and	regular	testing.	

	

Based	on	these	findings,	the	study	team	made	11	recommendations	

concerning	the	space	elevator	simulator.		The	major	ones	are:	

	

• A	software	space	elevator	simulator	should	be	developed.			

• It	should	be	based	on	Mathematica	and	SageMath.	

• It	should	be	professionally	developed	and	maintained.		

• Its	development	should	be	funded	by	a	crowd-funding	campaign.	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 v	

	

Table	of	Contents	 	

Preface	...	iii	
Executive	Summary	...	iv	

1			Introduction	..	1	
1.1			The	ISEC	Study	Process	..	1	
1.2			Report	Layout	..	2	

2			Context,	Scope	and	Use	Cases	..	3	
2.1			Context	of	a	Space	Elevator	Simulator	..	3	
2.2			Software	Scope	..	7	
2.3			Use	Cases	...	8	

3			Requirements	..	10	
3.1			Functional	Requirements	...	10	
3.2			Non-functional	Requirements	..	10	

4			Design	..	12	
4.1			Design	Guidelines	...	12	
4.1.1			Object-oriented	programming	..	12	
4.1.2			UML	Diagrams	..	12	
4.1.3			Model-View-Controller	Design	...	12	

4.2			Software	Architecture	...	14	
4.2.1			The	Math/Physics	Platform	...	14	
4.2.2			The	framework	..	17	
4.2.3			Design	Outline	..	17	

5			Implementation	..	24	
5.1			Developing	the	Software	..	24	
5.1.1			Programming	Languages	...	24	
5.1.2			Identifying	Developers	...	24	

5.2			Using	the	Software:	Concept	of	Operations	..	25	
5.2.1			Identifying	Users	...	25	
5.2.2			The	User	Interface	..	25	
5.2.3			Providing	and	Distributing	Resources	...	26	
5.2.4			Support	for	Users	and	Developers	..	27	
5.2.5			Security	and	Maintenance	...	27	
5.2.6			Software	Testing	and	Quality	Assurance	..	27	

6			Roadmap	for	Development	...	29	
6.1			Phased	Development	...	29	
6.1.1	Development	plan	...	29	
6.1.2	Framework	..	29	
6.1.3	Models	..	30	
6.1.4	Databases	...	30	

6.2			Funding	the	Development	..	30	
6.3			Steering	Future	Development	..	31	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 vi	

7			Conclusions	and	Recommendations	...	32	
7.1	Conclusions	...	32	
7.2	Recommendations	..	32	

Appendix	A			International	Space	Elevator	Consortium	...	34	

Appendix	B			ISEC	Yearly	Study	Reports	..	38	
Appendix	C			Terms	and	Acronyms	..	39	

Appendix	D			Brainstorming	Session	Minutes	...	41	
D.1			Session	at	2015	Space	Elevator	Conference	..	41	
D.2			Session	at	2016	Space	Elevator	Conference	..	43	
D.3			Session	at	2017	Space	Elevator	Conference	..	45	

	
	

	

1			Introduction	
	

A	standard	part	of	a	modern	engineering	project	is	the	computer	simulation	of	its	

major	components,	both	individually	and	as	a	co-working	whole.		This	is	especially	

true	for	large	or	complex	projects	in	which	physical	prototyping	is	very	expensive,	

time-consuming	or,	in	some	cases,	impossible.		Considering	that	the	space	elevator	

is	both	very	large	and	very	complex,	extensive	computer	simulation	of	its	behavior	

during	prototyping,	deployment	and	operational	phases	is	essential.	

	

Recommendation	1:	A	software	toolkit	should	be	developed	which	can	
simulate	the	space	elevator.	
	

The	International	Space	Elevator	Consortium	(ISEC)	(see	Appendix	A)	therefore	

initiated	a	study	to	specify	the	requirements	and	design	aspects	of	a	software	toolkit	

which	could	simulate	all	major	features	of	a	space	elevator.		The	goals	of	the	study	

were	to:	

	

• Identify	the	most	important	functions	of	the	simulator.	

• Derive	from	these	the	requirements	of	the	software	to	be	developed.	

• Outline	the	major	design	characteristics	of	the	software.		

	

The	report	from	this	study	is	intended	to	serve	as	a	guideline	and	not	a	detailed	

blueprint	for	the	future	development	of	a	software	simulator.		It	was	clearly	

understood	that	any	such	software	will	evolve	as	understanding	increases	and	new	

needs	arise.		It	is	a	goal	of	ISEC	that	the	software	resulting	from	this	study	should	

provide	the	high-quality	tools	needed	for	the	development	of	new	space	elevator	

applications	and	a	standard	means	of	comparing	new	and	existing	space	elevator	

models	with	data	and	with	each	other.	

	

This	document	is	the	eighth	in	a	series	of	yearly	technical	reports,	each	of	which	

deals	with	a	specific	aspect	of	space	elevator	development	or	operation.		A	list	of	

these	is	presented	in	Appendix	B.		They	are	available	either	for	sale	in	hardcopy	or	

free	as	pdf	files	at	www.isec.org.		Each	report	was	produced	using	the	ISEC	study	

process.	

	

1.1			The	ISEC	Study	Process	

	

ISEC	developed	a	process	of	selecting	a	key	topic	for	in-depth	analysis	and	

then	conducting	a	year-long	study	to	assess	various	aspects	of	the	topic.		This	

enables	ISEC	to	prioritize	activities	and	leverage	the	expertise	of	volunteers	in	

the	relevant	fields.		The	focus	on	a	single	topic	for	a	particular	year	enables	

the	community	to	bring	together	its	strengths	and	address	the	topic	at	the	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 2	

yearly	conference.		The	process	culminates	with	a	report	which	makes	

recommendations	for	future	action.	

	

1.2			Report	Layout	

	

Chapter	1,	Introduction,	discusses	the	necessity	of	a	space	elevator	simulator	and	
sets	forth	the	goals	and	process	used	to	guide	the	study	and	generate	this	report.				

	

Chapter	2,	Context,	Scope	and	Use	Cases,	discusses	the	situations	in	which	the	
space	elevator	simulator	will	be	used,	and	what	aspects	will,	and	will	not,	be	

simulated.		This	chapter	also	considers	specific	questions	which	the	simulator	will	

need	to	answer.	

	

Chapter	3,	Requirements,	describes	the	features	that	the	simulation	software	must	
have	and	how	they	follow	from	the	listed	use	cases.		Requirements	are	categorized	

as	either	functional,	which	directly	affect	simulation	outcomes,	or	non-functional	

(e.g.	open	source),	which	do	not	directly	affect	outcomes.				

	

Chapter	4,	Design,	lists	guidelines	for	software	design	and	outlines	the	overall	
architecture	which	follows	from	the	requirements.		Brief	discussions	of	the	software	

architectural	concepts	of	object-oriented	design	and	model-view-controller	are	

included.	

	

Chapter	5,	Implementation,	outlines	the	proposed	software	development,	testing	
and	support.		A	concept	of	operations,	covering	methods	of	collaborative	program	

development	and	use,	as	well	as	software	distribution	and	maintenance,	is	also	

discussed.	

	
Chapter	6,	Roadmap	for	Development,	makes	suggestions	for	how	simulator	
development	should	be	sequenced	and	funded.		A	possible	development	plan	is	laid	

out	with	a	very	approximate	cost	estimate.		The	evolution	of	the	software	over	time	

and	its	administration	is	also	discussed.	

	

Chapter	7,	Conclusions	and	Recommendations,	summarizes	the	main	findings	of	
this	report	and	makes	recommendations	to	ISEC	for	how	the	simulation	software	

should	be	developed.			
	

Appendices	briefly	describe	ISEC,	define	several	terms	and	acronyms,	list	past	ISEC	
studies	and	provide	minutes	of	the	brainstorming	sessions	dedicated	to	this	topic.	

	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 3	

2			Context,	Scope	and	Use	Cases	
	

The	space	elevator	simulator	will	be	used	as	a	software	tool	in	the	research,	design	

and	operational	phases	of	a	space	elevator	system.		Each	of	these	phases	defines	a	

context	in	which	questions	can	be	posed	and	answered.		Enumerating	which	

questions	can	and	cannot	be	answered	within	a	given	context	defines	the	scope	of	

the	software	and	avoids	tangential	development.		Given	context	and	scope,	specific	

use	cases	can	be	defined.		

2.1			Context	of	a	Space	Elevator	Simulator	

	

Four	main	arenas	of	study	define	the	contexts	in	which	the	simulator	will	operate:	

space	elevator	dynamics,	interaction	of	the	space	elevator	with	its	environment,	

interaction	of	tether	and	climber	and	normal	operation	and	failure	modes	

	

An	overview	of	the	dynamical	system	that	must	be	simulated	is	shown	in	Figure	1.		

It	includes	tether	and	climbers,	the	Earth	Port,	GEO	node	and	Apex	Anchor.		For	

definitions	of	these	and	other	terms	please	see	Appendix	C.		Shown	here	are	a	

number	of	effects	that	must	be	included	in	the	simulation	in	order	to	obtain	good	

predictions	of	space	elevator	motion:	Earth	Port	and	Apex	Anchor	masses	and	

motions,	tension	and	elasticity	in	the	tether,	gravitational	stabilization,	motion	and	

masses	of	tether	climbers	and	wind	forces	in	the	atmosphere.						

	

Figure	2	places	the	space	elevator	within	the	context	of	its	environment.		The	length	

of	the	tether	is	shown	approximately	to	scale	with	respect	to	the	Earth	and	its	

magnetosphere.		Also	shown	is	the	solar	wind	and	bow	shock	into	which	the	space	

elevator	and	Apex	Anchor	extend	during	part	of	the	daily	rotation.		Half	a	day	later	

the	entire	space	elevator	is	enveloped	within	the	magnetosphere.		Thus	the			

electromagnetic	and	radiation	fields	through	with	the	space	elevator	moves	are	

continuously	changing,	giving	rise	to	highly	dynamic	effects	which	must	be	

simulated.		A	precise	model	of	the	Earth’s	gravitational	field	is	of	course	also	

required	as	are	lunar,	solar	and,	to	a	lesser	extent,	planetary	fields.	

	

The	interaction	of	a	climber	with	the	tether	is	a	complex	topic	whose	simulation	

requires	the	coupling	of	several	diverse	areas	of	physics.		A	representation	of	a	

possible	tether	gripping	mechanism	is	shown	in	Figure	3.		The	friction	between	the	

climber	gripping	mechanism	and	the	tether	is	critical	to	the	operation	of	the	space	

elevator.		Several	things	about	this	process	are	unknown	and	must	be	studied:	the	

coefficient	of	friction	of	the	tether	material,	heat	transfer	from	the	climber	to	the	

tether,	the	effect	of	compression	and	expansion	of	the	tether	as	the	climber	passes	

by,	and	so	on.		Repeated	gripping	by	the	climber	will	likely	degrade	the	tether	

material	as	will	the	impact	of	small	particles	of	space	debris.	

	

						

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 4	

	
	

	

Figure	1:	Overview	of	the	Earth-based	elevator	dynamical	system	to	be	simulated	

under	normal	operational	conditions.				

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 5	

	

	

	

	

	

	

	

	

	
	

	

	

Figure	2:		The	electromagnetic,	gravitational	and	radiation	environment	in	which	

the	Earth-based	space	elevator	will	operate.		

	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 6	

The	simulator	will	play	a	major	role	as	part	of	a	feedback	control	loop.		During	

construction	and	normal	operation	conditions	tether	and	climber	positions,	tether	

tension	and	other	parameters	will	be	monitored	and	fed	into	an	elevator	control	

system,	which	will	include	a	simulation	model.		This	complex	system	will	use	the	

model	to	determine	the	optimum	control	outputs	to	yield	the	desired	elevator	

system	motion.	

	
	
	
	

						
	
	

	

	

	

Figure	3.		Possible	tether	gripping	mechanism	showing	the	deformation	of	the	tether	

and	other	effects.	

	
Operations	will	also	involve	planning	for	failure	modes.		The	simulation	will	need	to	

predict	unexpected	motions	or	events,	one	of	which	is	severance	of	the	tether.		

Figure	4	is	a	representation	of	the	motion	of	the	lower	part	of	the	tether	after	it	has	

been	severed,	perhaps	by	a	larger	piece	of	space	debris.		Understanding	what	

happens	to	all	parts	of	the	space	elevator	in	such	an	event	will	inform	recovery	and	

repair	procedures,	and	help	to	forecast	damage	caused	by	uncontrolled	pieces	of	the	

tether.	

	

Recommendation	2:		The	simulator	should	serve	and	inform	the	
development,	construction	and	operational	phases	of	the	space	
elevator.	

Effects	on	

tether	from	

space	debris	

Effects	on	tether	

from	gripping	

mechanism	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 7	

	
	
Figure	4.		An	example	of	failure	mode	analysis:	the	time	evolution	of	the	lower	part	

of	the	space	elevator	tether	after	a	severance.		Calculation	by	Paul	Williams.	

	

2.2			Software	Scope	

	

Many	different	simulation	models	will	be	required	to	support	the	construction	and	

operation	of	a	space	elevator,	but	not	all	will	be	included	in	the	current	project.		A	

simulation	model	will	not	be	included	if	it	either	has	no	direct	influence	on	space	

elevator	motion,	or	its	influence	is	sufficiently	indirect	that	it	can	be	factored	into	

another,	distinct	software	application.		Examples	of	such	models	are	the	distribution	

of	space	debris	and	its	likelihood	of	impacting	the	space	elevator	tether,	the	traffic	to	

and	from	the	Earth	Port,	GEO	Node	and	Apex	Anchor,	weather	conditions	at	the	

Earth	Port	and	in	the	upper	atmosphere,	Earth	surface	motions	due	to	wave	action,	

and	economic	and	political	forecasts.	

		

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 8	

While	all	of	the	above	models	could	inter-operate	with	some	future	dynamics	

simulation	model,	direct	inclusion	into	the	project	would	lead	to	unnecessary	

complication	at	this	stage.	

2.3			Use	Cases	

	

Some	general	and	specific	use	cases	are	presented	here	in	order	to	survey	the	needs	

of	a	space	elevator	simulation	software	project.	

	

Predict	motion	 transverse	 to	 tether	axis.	 	Assuming	 the	 space	elevator	 is	 in	 its	
operational	mode,	predict	the	tether’s	oscillation	modes	and	side-to-side	motions	in	

response	to	stretching,	climber	motion,	gravitational	forces,	electromagnetic	forces	

or	 debris	 impact.	 	 This	 will	 be	 needed	 for	 studies	 of	 payload	 release,	 vehicle	

rendezvous,	 space	 debris	 avoidance,	 Earth	 port,	 GEO	 station	 and	 apex	 anchor	

positioning.		

	

Predict	motion	 along	 tether	 axis.	 	 Calculate	 tether	 stretching	 and	 contraction	
about	 equilibrium,	 and	 its	 oscillation	 modes,	 given	 imparted	 energy	 and	 tether	

material	properties.		This	applies	to	the	same	studies	as	the	previous	use	case.	

		

Estimate	 effects	 of	 all	 engineering	 strains	 (tension,	 torsion,	 bending	 and	
shear)	 on	 tether.	 	 What	 is	 the	 relative	 importance	 of	 each	 strain,	 how	 do	 they	
couple	with	one	another	to	affect	tether	motion,	and	what	limits	do	they	impose	on	

tether	operation?		A	model	which	handles	this	would	likely	also	be	general	enough	

to	accommodate	the	first	two	use	cases.	

	

Calculate	tension	and	position	of	tether	at	Earth	port.	 	How	will	the	Earth	port	
be	moved	 and	what	 tension	must	 it	 counteract	 due	 to	 vibrations	 and	 extensions/	

contractions	of	the	tether?		Conversely,	how	will	moving	the	Earth	port	affect	tether	

motion?	

	

Simulate	 reel-in/reel-out	 of	 tether	 at	 Earth	 Port	 and/or	 Apex	 Anchor.	 	How	
does	gathering	in	or	paying	out	lengths	of	tether	affect	the	motion	and	tension	in	the	

tether?		Is	it	necessary	to	do	this	also	at	GEO	or	the	Apex	Anchor?	

	

Simulate	 payload	 capture	 and	 release	 at	 various	 points	 along	 tether.	 	 Extra	
masses	representing	payloads,	being	attached	to	and	detached	from	the	tether,	will	

cause	 local	 deflections	 from	 tether	 vertical	 and	 local	 variations	 in	 tether	 tension	

which	will	be	propagated	up	and	down	the	tether.		These	will	need	to	be	calculated	

and	understood.	

	

Calculate	 the	 effect	 of	 friction	 between	 the	 climber	 and	 tether	 on	 the	 bulk	
material	of	 the	 tether.	 	The	climber	will	grip	the	tether	and	transmit	heat	energy	
into	the	tether.		How	will	this	affect	the	structural	integrity	of	the	tether?	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 9	

Calculate	effect	of	moving	climbers	on	tether.	 	What	motions	are	induced	when	
several	climbers	are	in	motion	both	up	and	down	the	tether,	and	what	are	the	limits	

on	climber	speed?	

	

Simulate	severance	of	the	tether.		What	happens	to	the	upper	and	lower	segments	
of	the	tether	if	it	is	parted	at	some	point?		The	detailed	motion	of	each	piece	along	its	

length	 should	 be	 calculated:	 this	 data	 could	 then	 be	 used	 for	 risk	 analysis	 and	

optimization	of	sever	mitigation	actions.	

	

Estimate	effect	on	tether	of	its	regular	motion	through	the	magnetosphere	and	
solar	wind.	 	Electromagnetic	 forces	and	currents	will	be	induced	according	to	the	
electrical	 properties	 of	 the	 tether	material.	 	 How	 is	 tether	motion	 affected?	 	 This	

would	include	the	effects	of	solar	storms,	for	example.	

	

Simulate	 the	 effect	 of	 space	 radiation	 on	 tether	 motion,	 bulk	 material,	 and	
climbers.	 	How	do	 fluxes	of	energetic	charged	particles	affect	 the	motion,	 surface	
currents	 and	 structural	 integrity	 of	 the	 tether?	 	This	would	 include	 light	pressure	

from	 the	 scattering	of	 photons,	 collected	 charge	due	 to	passage	 through	 radiation	

belts	and	induced	radioactivity.			
	

Calculate	the	effect	of	winds	and	other	atmospheric	effects	on	tether	motion.		
Atmospheric	 winds	 can	 have	 a	 large	 effect	 on	 tether	 and	 climber	 motion	 and	

integrity	of	the	tether.	

	

Calculate	tether	motion	when	coupled	to	High	Stage	One.		One	end	of	the	tether	
may	connect	to	a	high-altitude	platform	supported	by	various	means.		The	platform	

and	 its	 support	 may	 take	 many	 different	 forms	 requiring	 different	 simulation	

approaches,	but	the	mutual	motion	of	tether	and	platform	could	be	simulated	with	

models	already	mentioned	above.	
	

Simulate	the	effect	of	lunar,	solar	and	planetary	gravity	on	tether	motion.		
Any	 elevator	 tether	 will	 be	 subject	 to	 multiple	 gravity	 forces	 (lunar,	 solar,	 etc.),	

requiring	 the	 inclusion	 of,	 or	 access	 to	 a	 solar	 system	 ephemeris	 database	 in	 the	

model.	 	This	will	 require	a	 careful	 choice	of	 coordinate	 reference	 frame	 to	ensure	

that	all	tidal	and	resonance	forces	are	correctly	modeled.		Effects	of	a	non-spherical	

Earth	should	also	be	included.		

	

	

	

	

	

	

	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 10	

3			Requirements	
	

In	software	design	terminology	there	are	two	types	of	requirements:	functional,	

which	directly	affect	outcomes,	and	non-functional,	which	do	not.		The	in-scope	use	

cases	discussed	above	drive	the	functional	requirements.		Non-functional	

requirements	deal	with	the	way	the	software	will	operate	or	be	maintained	or	be	

distributed,	among	other	things.		A	non-exhaustive	list	for	each	class	of	requirement	

is	presented	here.	

3.1			Functional	Requirements	

	
Dynamics	simulation	of	all	engineering	strains:		includes	tension,	torsion,	
bending	and	shear	and	all	couplings	between	them.	

	

Electrodynamics	simulation:		includes	the	forces	exerted	by	electromagnetic	fields	
on	the	space	elevator	tether	and	the	currents	and	voltages	induced.				

	
Simulation	of	radiation	effects:		the	effects	of	solar	radiation,	cosmic	rays	and	
radiation	belts	on	the	tether	material	and	motion.	

	

Faithful	representation	of	the	physics	environment:		includes	gravitational	
fields,	electric	and	magnetic	fields,	radiation	fields,	atmospheric	effects	and	so	on.	

	

Capability	to	model	friction:		both	static	and	rolling.	
	

Direct	access	to	databases:		such	as	gravitational,	radiation	distributions,	etc.	
	
Validation	against	real-world	data:		includes	comparison	to	space-based	and	
Earth-based	experiments.	

	

Software	must	be	versatile.		It	should	accommodate	different	space	elevator	
models,	some	of	which	already	exist.	

	

Pipelining	of	results	from	one	model	to	another	should	be	possible.		This	would	
allow	run-time	cross-comparison	and	validation.	

3.2			Non-functional	Requirements	

	

Simulation	software	may	be	proprietary	or	open	source.	
	

A	standard	schema	should	exist	for	comparing	results	of	different	models.		
This	makes	objective	evaluation	of	results	easier.	

	
Users	must	have	access	to	model	parameters.		These	parameters	may	represent	
a	restricted	set	of	the	full	parameter	space.	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 11	

	

Longitudinal	testing	must	be	done.		Routine	testing	of	the	software	over	time	
helps	to	understand	changes	and	provide	quality	assurance.				
	
Software	verification	must	be	performed.		Tests	should	be	developed	which	
demonstrate	that	the	software	is	doing	what	it	claims	to	do.		In	the	long	term	this	

verification	must	include	comparison	to	real-world	test	and	operational	data.	

	

High-quality	visualization	should	be	available.		This	includes	real-time	displays	
of	predicted	space	elevator	motion,	monitors	of	various	functions	as	model	

parameters	vary,	and	movies.			

	

Analysis	tools	must	be	available.		These	are	needed	to	histogram	or	plot	results	
and	to	extract	results	from	simulation	applications.			

	
Non-functional	requirements	pertaining	to	the	development,	operation	and	

maintenance	of	the	software	are	discussed	in	more	detail	in	Chapter	5,	

Implementation.	
	

	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 12	

4			Design	
	

This	report	does	not	intend	to	lay	out	a	detailed	design	of	the	space	elevator	

simulation	software;	instead	it	will	outline	the	major	design	elements	required	for	

flexible,	evolving	software.		At	this	writing	it	is	not	known	what	portions	of	the	

software	will	be	developed	by	professionals	or	by	talented	volunteers,	or	both.		

Nevertheless,	adherence	to	a	few	principles	will	help	to	ensure	high	quality.			

4.1			Design	Guidelines	

	

Three	modern	programming	concepts	will	be	followed.		These	are	object-oriented	

(OO)	programming,	model-view-controller	(MVC)	design	and	Unified	Modeling	

Language	(UML)	diagrams.					

4.1.1			Object-oriented	programming	

Object-oriented	programming	is	based	on	“objects”	which	contain	data	and	

instructions	which	operate	on	the	data.		Software	projects	are	then	built	from	a	

collection	of	objects	which	can	interact	with	one	another	in	well-defined	ways.		

Programming	in	this	manner	encourages	better	association	of	data	with	

functionality,	better	segregation	of	unrelated	parts	of	the	software	and	more	

modular	design.	

4.1.2			UML	Diagrams	

UML	diagrams	are	a	useful	tool	in	OO	design.		They	provide	a	standard	way	to	

visualize	the	structure	and	relationships	of	objects:		

	

• Objects	are	represented	by	boxes	which	contain	lists	of	data	held	in	the	

object	and	operations	that	the	object	can	perform.	

• Boxes	are	connected	by	various	types	of	line	which	indicate	relationships	

between	objects.	

• Groups	of	related	objects	may	be	collected	into	and	represented	by	package	

(or	file	folder)	shapes.	

	

A	basic	set	of	UML	diagrams	follows	from	the	requirements	and	use	cases	and	

allows	major	design	decisions	to	be	made	before	any	software	is	written.		Once	the	

design	is	settled,	specific	programming	rules	(such	as	those	in	C++)	allow	a	direct	

translation	of	UML	diagrams	into	software.	

	

Specific	UML	diagrams	for	the	simulator	project	are	shown	in	section	4.2.3.2.	

4.1.3			Model-View-Controller	Design	

MVC	is	an	approach	to	software	architecture	which	divides	application	software	into	

three	components:	models,	which	describe	solutions	to	specific	problems,	views,	

which	send	data	to	the	user	based	on	changes	in	the	model,	and	controllers,	which		

take	input	from	the	user	and	send	it	as	commands	to	the	models.		

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 13	

For	space	elevator	applications,	a	model	could	be	a	representation	of	tether	motion	

as	a	function	of	time,	a	description	of	the	Earth’s	magnetic	field	or	a	dynamic	

formulation	of	energy	imparted	to	the	tether	by	the	gripping	of	the	climber.	

	

Views	describe	user	interfaces,	graphical	and	otherwise,	which	present	model	

output	to	the	user	so	that	it	can	be	analyzed.		Analysis	could	take	place	visually,	

through	the	use	of	histogramming	or	plotting	tools,	or	by	numerical	methods.					

	

Controllers	allow	the	execution	of	models	and	views	to	be	steered	through	the	use	of	

a	restricted	set	of	parameters,	while	hiding	implementation	details	that	are	likely	of	

no	interest	to	the	user.		Controllers	together	with	views	provide	the	user	interface,	

which	may	take	the	form	of	a	control	console	or	command	line	reader.	

	

	

	
	

	

Figure	5:	Model-View-Controller	concept.		Controllers	interpret	input	from	the	user,	

models	respond	to	commands	from	controllers	and	views	send	output	from	models	

to	the	user.	

	

	

As	shown	in	Figure	5,	this	type	of	architecture	separates	the	details	of	the	models	

from	the	user	who	typically	will	only	wish	to	change	a	small	number	of	model	

parameters	and	observe	the	result.			

	

Recommendation	3:	The	design	of	the	simulation	software	should	follow	
the	Model-View-Controller	(MVC)	concept.	

Model	

View	

User	

Controller	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 14	

4.2			Software	Architecture	

	

From	the	requirements	discussed	in	Chapter	3,	it	is	clear	that	a	wide	variety	of	

physics	and	mathematics	algorithms	must	be	included	in	the	simulation.		Because	

such	algorithms	are	usually	CPU-intensive,	they	must	be	efficient	and	optimized	for	

the	tasks	at	hand.		Rather	than	re-invent	the	wheel,	it	makes	sense	to	take	advantage	

of	math/physics	platforms	which	already	supply	most	of	the	needed	functionality.		

Building	a	simulator	on	top	of	one	or	more	of	these	platforms	would	save	years	of	

work,	ensure	a	degree	of	standardization	and	enhance	reliability.	

	

The	math/physics	platform	will	need	to	work	seamlessly	with	space	elevator	

applications,	databases	and	user	interfaces.		The	linkage	that	makes	this	possible	

will	be	supplied	by	a	set	of	software	modules	called	a	framework.	

	

Recommendation	4:		A	multi-purpose	math/physics	platform	should	be	
chosen	upon	which	the	simulation	software	will	be	built.	

4.2.1			The	Math/Physics	Platform	

The	study	team	considered	several	general	platforms	now	used	in	science	and	

engineering,	as	well	as	some	specific	to	space	and	tether	applications.		These	

platforms	were	evaluated	according	to	criteria	deemed	important	for	a	general	

space	elevator	simulator	and	one	was	selected.	

4.2.1.2			Selection	Criteria	
The	calculation	of	full,	four-dimensional	motion	must	be	available.		This	includes	

longitudinal	and	transverse	vibrations	and	their	damping,	non-linear	motions	near	

to	and	far	from	stability,	motions	of	moving	masses	(climbers)	coupled	to	the	tether	

and	the	effects	of	climber	capture	and	release.	

	

Physics	capability	must	be	extensive,	providing	the	modeling	of	tension,	torsion,	

shear	and	bending,	Young’s	modulus,	Poisson’s	constant,	coefficient	of	friction	and	

other	mechanical	properties	of	the	tether,	and	the	modeling	of	gravitational,	

electromagnetic	and	radiation	effects,	conductivity	and	other	electrical	properties	of	

the	tether.	

	

Mathematics	capability	must	include	non-linear,	highly	coupled	differential	

equations,	fast	numerical	integrators	and	numerous	advanced	math	functions.		It	

must	also	be	able	to	perform	finite	element	calculations.	

	

Modules	to	model	environmental	effects	such	as	atmosphere,	tides,	earthquakes	and	

ocean	waves	should	be	available.	

	

The	platform	should	be	compatible	with	external	software	such	as	libraries	of	other	

physics	software,	external	databases	and	existing	space	elevator	models.	

	

Benchmarking,	regression	testing	and	unit	testing	should	all	be	supported.	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 15	

Cost	should	be	reasonable	and	licensing	should	accommodate	world-wide	usage	of	

the	software	without	US	export	control	(ITAR)	restrictions.		Open	source	software	is	

preferred	but	not	required.	

	

Excellent	support	of	users	and	software	developers	is	desired.	

	

The	platform	software	should	be	easy	to	build,	use	and	maintain.	

	

Direct	experience	with	the	platform	by	ISEC	members	is	very	important.	

	

4.2.1.3			Survey	of	Existing	Platforms	
Seven	multi-purpose	math/physics	platforms	were	considered.		Two,	GTOSS	and	

TetherSim,	are	used	in	space	and	tether	applications.		Five	are	for	general	science	

and	engineering	use:	MATLAB,	ANSYS,	COMSOL,	SageMath	and	Mathematica.		Each	

platform	was	measured	against	the	above	criteria	where	possible.		

	

GTOSS	is	a	well-known	heritage	application	for	simulating	complex	tether-and-
mass	combinations	and	has	been	used	for	many	NASA	applications.		It	is	free	of	

charge	and	open-source.		It	supports	tether	calculations	in	gravitational	and	

magnetic	fields,	but	does	not	support	continuum	mechanics	calculations,	bending	or	

torsion	strains.		The	user	interface	consists	of	a	simple	input	file	and	periodic	data	

dumps	during	the	execution	of	the	program.		Rather	than	a	general	simulation	

platform,	GTOSS	would	serve	more	as	a	specific	type	of	space	elevator	application.	

	

TetherSim	is	a	modern	simulation	tool	for	tether	dynamics	which	is	currently	being	
used	for	several	space	applications.		It	is	more	general	than	GTOSS	and	supports	

continuum	mechanics,	electrodynamics	and	all	engineering	strains	except	torsion.		

It	is	proprietary	software	costing	several	thousand	dollars	per	license,	including	

user	support.		It	is	not	clear	if	this	product	is	easily	compatible	with	external	

applications	or	with	space	elevators	significantly	different	from	the	kind	it	is	

designed	to	deal	with.	

	

MATLAB	is	a	programming	language	especially	designed	for	general	numerical	
calculations.		Some	dedicated	physics	modules	are	available	but	none	are	especially	

useful	for	space	elevator	physics;	users	must	program	what	is	needed.		It	supports	

object-oriented	programming,	is	somewhat	similar	to	C++	and	is	compatible	with	

programs	written	in	other	languages.		The	base	software	is	not	open,	with	licenses	

costing	around	$2000	per	user.		MATLAB	has	been	used	for	2D	space	elevator	

simulations,	but	3D	cases	are	laborious	and	difficult	to	implement.		It	has	no	user	

interface	and	is	not	seen	as	user-friendly.	

	

ANSYS	is	a	professional	simulation	tool	widely	used	in	industry,	including	aerospace	
and	space	systems.		A	comprehensive	set	of	specialized	physics	modules	provides	

the	structural	mechanics,	electrodynamics,	differential	equation	solvers	and	3D	

finite	element	analysis	needed	to	simulate	the	space	elevator.		ANSYS	is	flexible,	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 16	

compatible	with	external	software	and	relatively	easy	to	use	after	sufficient	training.		

Good	user	support	is	available.		The	software	is	proprietary,	costing	up	to	$30,000	

per	user	license	and	varying	from	country	to	country,	but	quotes	are	made	privately	

to	individual	customers.	

	

COMSOL	is	a	general	modeling	platform	used	to	simulate	electrical,	mechanical,	
fluid	flow	and	chemical	applications.		Its	multi-physics	approach	allows	various	

physical	effects	to	be	treated	in	a	coupled	way.		Some	add-on	modules,	which	cost	

extra,	would	be	required	for	space	elevator	simulation.		There	is	no	gravitational	

module	so	it	would	have	to	be	developed	by	users.		Users	can	insert	non-linear	

differential	equations	for	custom	modeling	and	finite	element	analysis	is	included.		

COMSOL	has	a	good	user	interface,	but	more	complex	physics	modeling	is	not	

particularly	user-friendly.		It	is	not	clear	if	COMSOL	libraries	are	compatible	with	

those	of	other	modeling	toolkits.		Its	cost	is	$30,000	per	user	license,	which	is	valid	

world-wide	and	in	perpetuity.		Good	user	support	is	supplied.	

	

SageMath	is	free	software	for	mathematical	modeling	and	is	intended	as	an	open-
source	alternative	to	MATLAB	or	Mathematica.		It	is	not	designed	in	terms	of	specific	

physics	modules,	but	rather	as	a	more	general	mathematics	toolkit	providing	

differential	equation	and	linear	algebra	solvers.		It	currently	does	not	support	finite	

element	analysis.		Several	graphics	modules	are	supplied	for	plotting	and	analysis.	

The	coupling	of	physics	tools	is	not	provided,	requiring	users	to	develop	this	feature.		

The	SageMath	libraries	can	be	used	interchangeably	with	those	of	Mathematica.		

Although	there	is	no	professional	user	support,	a	community	of	SageMath	

developers	answers	questions	on	a	best-effort	basis.				

	

Mathematica	is	a	general	programming	platform	for	mathematics,	engineering	and	
other	disciplines.		It	contains	a	suite	of	math	solvers	for	differential	equations	and	

finite	element	analysis,	among	others.		It	handles	partial,	non-linear	and	high-order	

differential	equations	in	a	general	way.		Like	SageMath,	it	is	not	designed	around	

specific	modules,	but	rather	as	a	general	math	toolkit.		It	does,	however,	contain	an	

aerospace	module	and	some	features	for	dynamic	and	electrical	computations.	

Users	are	generally	responsible	for	developing	applications	for	their	specific	use	

cases.		Mathematica	libraries	are	very	compatible	with	those	of	SageMath.		

Mathematica	is	relatively	inexpensive,	with	single	user	licenses	costing	about	$300	

and	institutional	licenses	in	the	several	thousands.		Professional	user	support	is	

included.	

4.2.1.4			Recommended	Math/Physics	Platform	
The	study	team	decided	that	a	platform	should	be	general	and	not	focused	on	a	

particular	discipline	or	set	of	applications.		It	was	therefore	decided	to	remove	

GTOSS	and	TetherSim	from	the	list	of	candidates.	

	

While	ANSYS	and	COMSOL	are	certainly	general,	they	seem	to	be	aimed	mainly	at	

institutional	engineers	and	may	not	be	particularly	amenable	to	research	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 17	

applications	with	fairly	deep	math	requirements.		Their	high	cost	would	be	a	barrier	

to	individual	users	who	wish	to	contribute	to	space	elevator	development.					

	

This	leaves	MATLAB,	SageMath	and	Mathematica.		MATLAB’s	lack	of	a	user	interface	

and	the	reported	difficulty	in	setting	up	3D	simulations	are	strong	negatives.		

SageMath	seems	much	better,	but	it	does	not	support	finite	element	solutions	for	

space	elevator	motion.		However,	its	generality	and	library	compatibility	with	

Mathematica	make	SageMath	an	excellent	open-source	alternative	which	could	be	

offered	along	side	another	modeling	toolkit.	

	

We	therefore	selected	Mathematica	as	the	math/physics	platform	because	of	its	

generality,	low	cost	and	compatibility	with	an	open-source	alternative.		SageMath	

will	also	be	made	available	in	order	to	provide	this	alternative.		In	order	to	handle	

cases	where	Mathematica	provides	functionality	that	SageMath	does	not,	standards	

for	data	interchange	between	the	two	platforms	should	be	developed.		Work	

elements	could	then	be	performed	in	SageMath,	with	their	results	fed	into	

Mathematica	where	additional	work	would	be	done.	

	

Recommendation	5:		Mathematica	should	be	used	as	the	math/physics	
platform	of	the	simulator,	with	SageMath	as	an	open-source	alternative.	

4.2.2			The	framework	

The	framework	can	be	viewed	as	the	software	analog	of	an	electrical	bus	to	which	

components	may	be	attached	and	through	which	they	can	communicate	with	one	

another.		It	is	responsible	for	organizing	the	many	software	modules	required	for	

simulation	and	making	them	work	together.		General	purpose	frameworks	such	as	

USQUE	already	exist,	but	the	choice	of	framework,	and	whether	or	not	a	custom	

version	is	required,	will	depend	on	the	math/physics	platform	chosen.		

4.2.3			Design	Outline	

4.2.3.1			Software	to	Be	Written	
None	of	the	software	in	our	survey	supplied	all	the	features	that	will	be	required	for	

a	versatile	space	elevator	simulator.		Many	features	will	need	to	be	added	in	order	to	

supply	all	the	necessary	physics,	on-demand	database	access,	flexible	user	interfaces	

and	access	to	already	existing	space	elevator	models.		Applications	addressing	the	

use	cases	listed	in	Chapter	2,	and	those	not	yet	anticipated,	will	be	written	using	the	

functionality	provided	by	Mathematica	and	SageMath.			

	

A	number	of	service,	administrative	and	security	functions	will	also	need	to	be	

developed	so	that	the	entire	simulator	software	can	easily	be	used,	distributed	and	

maintained	in	a	modern	and	evolving	computing	environment.	

	

The	first	step	in	the	design	process	will	be	to	develop	an	architecture	for	the	

simulator	software	in	which	all	of	its	major	components	and	their	relationships	to	

one	another	are	laid	out	and	detailed.		In	a	good	design,	the	major	components	will	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 18	

be	modular	enough	that	they	can	be	developed	independently	of	one	another.		Each	

major	component	should	in	turn	be	laid	out	and	detailed	before	software	

development	can	begin.	

4.2.3.2			Preliminary	UML	Design	
A	set	of	UML	diagrams	was	developed	based	on	the	above	guidelines	and	the	

recommendation	to	use	existing	software	to	provide	general	math	and	physics	

functionality	for	application	development.	

	

Figure	6	shows	the	package-level	design.		It	indicates	the	largest,	highest-level	

components	and	how	they	are	related,	with	MVC	design	playing	the	central	role.	

The	interfaces	to	Mathematica	and	SageMath	provide	access	to	the	basic	math	and	

physics	functionality	required	by	the	models.		Physics	databases	refer	to	interfaces	

which	access	publicly	available,	professionally	maintained	collections	of	data	on	

gravitational,	electromagnetic	and	radiation	fields	which	can	impact	space	elevator	

motion.		The	resources	package	deals	with	CPU	issues,	memory	allocation	and	

storage,	while	the	utilities	package	is	as	yet	undefined.		The	system	package	could	

eventually	depend	on	both	of	these.		View	elements	refer	to	all	the	components	

necessary	to	develop	views	and	display	results	to	the	user.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 19	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	6.		UML	diagram	of	simulator	packages	showing	dependencies.		An	arrow	

pointing	from	package	A	to	package	B	indicates	that	A	depends	on	B.	

Globals	

Managers	

Security	

		

	

	

	

System	

Databases	

	

	

	

	

to	Mathematica	and	

SageMath	

	

	

	

Elements	

	

Has	view	models	

	

	

Utilities	 Resources	

Physics	 Interfaces			

Controller	

Model	 View	

View	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 20	

It	is	useful	to	look	in	detail	at	a	few	of	the	packages	in	the	above	design,	specifically	

the	model,	view	and	controller.		These	will	be	described	using	some	of	the	terms	and	

elements	of	the	C++	programming	language.		In	the	following	UML	diagrams,	boxes	

represent	classes	of	objects.		A	class	is	a	C++	construct	defining	data	and	operations	
on	the	data.		An	object	is	an	instance	of	a	class	which	corresponds	to	a	specific	

location	in	memory.		

	

Classes	may	be	grouped	in	well-defined	relationships	using	a	feature	called	

inheritance	in	which	common	features	of	several	classes	may	be	abstracted	out	and	
placed	into	a	higher-level	or	ancestor	class.		Common	programming	then	need	not	

be	repeated	in	the	descendant	classes,	and	in	some	cases	related	descendant	classes	

may	be	used	interchangeably.		Inheritance	is	designated	in	UML	diagrams	by	an	

arrow	pointing	from	the	descendant	or	derived	class	to	the	ancestor	or	base	class.			
Listed	at	the	top	of	the	class	box	is	the	class	name	and	below	that,	the	operations	

that	the	classes	can	perform,	called	methods.	
	

Model	Package	The	model	package	will	contain	all	the	software	representations	of	
physical	components	of	the	space	elevator	tether,	climber	and	environments.		There	

will	likely	be	several	different	implementations	of	each	component,	of	varying	

degrees	of	complexity.		The	tether,	for	example,	may	be	represented	by	a	collection	

of	rigid	rods,	a	single	flexible	ribbon	or	a	series	of	springs.		All	of	these	are	related	by	

common	properties	and	could	be	used	interchangeably	by	sharing	the	same	

interface.		This	relationship	is	expressed	in	the	class	diagram	in	Figure	7.	

	

The	Model	class	is	the	most	general	and	highest-level	class	from	which	all	other	

model	classes	are	derived.		Models	become	more	specialized	as	the	diagram	is	

descended,	but	maintain	common	features	from	their	base	classes.		So	

ClimberModel,	TetherModel	and	FieldModel	classes	are	all	kinds	of	Models,	and	

RigidRods	and	ContinuousRibbon	classes	are	kinds	of	TetherModel.		This	scheme	of	

inheritance	accommodates	a	wide	range	of	different	models	while	preserving	

commonality	and	re-using	common	program	segments.	

	

The	chain	of	inheritance	can	be	extended	downward	until	the	bottom-most	class	

represents	the	fully	detailed	implementation	of	a	specific	climber,	tether	or	field.	

	

External	models,	that	is,	those	developed	by	other	authors	not	using	the	tools	of	this	

simulator,	will	also	belong	to	the	model	package.		For	each	such	model	an	interface	

will	need	to	be	written	which	allows	the	external	model	to	be	used	as	if	it	were	

native	to	the	proposed	simulator.				

	

View	Package	The	view	package	contains	the	classes	required	to	take	output	from	
the	models	and	display	it	to	the	user.		Many	different	views	should	be	available,	

including	complete	or	partial	views	of	the	space	elevator	and	its	motion,	data	feeds	

from	the	model	to	the	user’s	monitor,	and	graphs	and	histograms	updated	as	the	

model	calculations	proceed.			

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 21	

One	kind	of	view	might	be	a	monitor	which	displays	various	aspects	of	space	

elevator	motion.		It	may	show	climber	motion	or	perhaps	a	large-scale	view	of	the	

space	elevator	in	a	dynamic	magnetosphere.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	7.		Partial	UML	diagram	for	model	classes.	

	

	

Views	could	also	be	used	to	monitor	data	flow	through	the	use	of	dials	and	gauges,	

as	well	as	the	quality	of	the	data	feed.	

		

Some	of	the	classes	needed	to	implement	views	are	shown	in	the	UML	diagram	in	

Figure	8.	

Model	

CreateParam()	

Draw()	

	

	

FieldModel	

	

	

	

	

		ClimberModel	

	

	

	

TetherModel	

	

	

	

RigidRods	

	

	

	

Continuous	

Ribbon	

	

	

Gravitational	

Field	

	

	

Magnetic	

Field	

	

	

LunarField	

	

	

	

SolarField	

	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 22	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	8.		Partial	UML	diagram	of	view	classes.	

	

	

	

Controller	Package	Controllers	allow	models	and	views	to	be	steered	by	a	few	
parameters	exposed	to	the	user.		In	addition	to	model	and	view	controllers,	there	

may	be	run	controllers,	analysis	controllers	and	test	controllers,	among	others.			

These	are	shown	in	the	UML	diagram	in	Figure	9.	

	

There	may	be	several	kinds	of	model	controller,	such	as	a	console	with	knobs	and	

sliders	for	entering	model	parameters	or	drop-down	menus	for	choosing	models.		

View	controllers	will	allow	users	to	customize	the	appearance	of	model	output.		This	

would	include	changing	the	scale	of	the	display	or	graph	axes,	or	reconfiguring	the	

graphical	user	interface	to	suit	a	particular	aspect	of	study.	

View	

	

	

	

MonitorView	

	

	

	

GraphView	

	

	

	

DataView	

	

	

	

Magnetosphere

View	

	

	

ClimberView	

	

	

	

TetherView	

	

	

	

DialsAndGauges	

	

	

	

DataFeed	

	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 23	

	

Run	controllers	would	allow	users	to	set	things	like	start	and	stop	times	for	the	

simulation,	and	perhaps	the	time	increments	used	by	the	time	steppers	when	this	is	

not	done	automatically.		Analysis	controllers	would	provide	options	for	post-

processing	data	from	the	model	or	plotting	it	on	the	screen.		Many	types	of	test	

controller	should	be	made	available.		These	would	oversee	benchmarking	of	various	

models,	regression	tests	and	CPU	performance	profiling.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

	

	

	

Figure	9.		Partial	UML	diagram	of	controller	classes.	

	

	

	

	

	

	

	

	

SimController	

	

	

	

Analysis	

Controller	

	

	

Run	

Controller	

	

	

Model	

Controller	

	

	

View	

Controller	

	

	

Test	

Controller	

	

	

Control	

Console	

	

	

Motion	

Monitor	

	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 24	

5			Implementation	

5.1			Developing	the	Software	

5.1.1			Programming	Languages	

Before	software	development	can	begin,	programming	and	scripting	languages	need	

to	be	chosen.		The	recommendation	of	Mathematica	and	SageMath	as	the	

math/physics	platforms	make	certain	languages	a	natural	choice.				

	

First	of	all,	Mathematica	comes	with	its	own	symbolic	programming	language,	the	

Mathematica	Language.		It	is	expected	that	most	of	the	development	of	space	

elevator	models	and	other	applications	will	use	this.		Mathematica	and	the	

Mathematica	language	are	written	in	C,	C++	and	Java;	its	compiled	libraries	are	fully	

interoperable	with	external	C	and	C++	libraries.		SageMath	is	written	in	Python.		Its	

libraries	are	also	compatible	with	external	C	and	C++	libraries.		

	

While	this	covers	most	of	the	anticipated	development,	there	will	likely	be	

programming	required	outside	of	Mathematica.		Python	and	C++	are		logical	choices.	

	

C++	is	a	versatile,	modern	programming	language	which	promotes	object-oriented	

design.		It	has	an	actively	maintained	set	of	standards	which	ensures	its	

compatibility	with	modern	computing	hardware.		C++	is	well-known	to	both	

professional	and	amateur	programmers	and	its	compilers	are	widely	available.				

	

Python	is	a	high-level	interpreted	language	which	emphasizes	readability	and	clear	

programming.		It	is	often	used	as	a	scripting	language	and	is	popular	and	well-

supported.	

	

Recommendation	6:	The	programming	languages	C++	and	Python	
should	be	available	for	any	simulator	development	which	cannot	be	
done	within	Mathematica.			
	

5.1.2			Identifying	Developers	

In	order	to	ensure	uniform,	high-quality	software	it	is	probably	best	to	hire	a	

professional	programmer	to	develop	at	least	the	core	of	the	simulator	software.		

This	would	include	the	model,	view	and	controller	classes	mentioned	above,	

interfaces	to	Mathematica	and	SageMath	software	and	the	infrastructure	needed	to	

connect	to	external	databases,	among	other	things.		ISEC	members	should	be	able	to	

develop	new	space	elevator	applications	using	the	core	software,	and	space	elevator	

modelers	outside	of	ISEC	should	be	able	to	develop	the	interfaces	needed	to	run	and	

test	their	applications	within	the	ISEC	simulator.	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 25	

Recommendation	7:	The	core	simulation	software	should	be	written	by	
a	professional	programmer	with	subsequent	development	done	by	ISEC	
members.	

5.2			Using	the	Software:	Concept	of	Operations	

5.2.1			Identifying	Users	

A	high-quality	software	simulator	will	attract	many	users	with	different	needs	and	

qualifications.		Users	will	range	from	scientists	and	engineers	to	students	to	gamers.	

	

Scientists	and	engineers	will	likely	want	all	the	functionality	that	the	simulation	can	

offer.		This	should	allow	them	to	carry	out	detailed	research	on	most	aspects	of	

space	elevator	motion	and	operation.		They	will	also	need	to	develop	and	test	their	

own	models	and	applications.	

	

Students	will	use	the	software	to	learn	about	space	elevators	and	the	basic	physics	

behind	them.		They	will	use	existing	models	supplied	with	the	simulator.		Advanced	

students	may	also	become	developers,	producing	their	own	models.	

	

Gamers	and	casual	users	might	only	be	interested	in	using	the	simulator	for	fun.		

Such	purposes	may	include	anything	from	satisfying	a	curiosity	about	space	

elevators	to	including	simulations	of	them	in	an	online	game.		Access	to	the	full	

simulator	functionality	would	likely	be	unnecessary	in	these	cases.						

5.2.2			The	User	Interface	

Users	will	operate	the	simulator	from	their	own	devices,	be	it	cell-phone,	tablet	or	

PC,	through	one	or	more	interfaces.		These	can	take	the	form	of	a	command	line,	file	

input	or	graphical	user	interface	(GUI).		It	is	likely	that	the	GUI	will	be	most	popular,	

so	some	consideration	of	its	look	and	feel	is	due.				

	

A	notional	view	of	the	GUI	as	it	would	appear	on	a	user’s	screen	is	shown	in	Figure	

10.		It	is	one	of	many	views	that	would	be	made	available	to	the	user	in	order	to	

control	the	simulation.		Sliders	and	knobs	would	provide	analog	control	over	a	

restricted	set	of	model	parameters	that	the	model	author	has	seen	fit	to	provide.			

More	parameters	might	be	made	available	for	scientists	and	engineers	than	for	

casual	users.		In	either	case	the	response	of	the	simulated	space	elevator	to	changing	

parameters	should	be	as	fast	as	possible.	

	

The	command	line	and	file	input	interfaces	would	be	useful	for	sending	simulation	

results	straight	to	analysis	tools	without	viewing	the	behavior	on	a	screen	or	

monitor.		This	mode	of	operation	is	well-suited	to	batch	job	running.			

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 26	

	

	

Figure	10.		Notional	view	of	user’s	screen	while	operating	simulator.	

	

5.2.3			Providing	and	Distributing	Resources	

Once	the	simulator	software	is	developed	it	will	become	the	property	of	ISEC,	which	

will	maintain	and	distribute	it.		Software	developed	for	or	by	ISEC	would	be	under	

an	open-source	license	such	as	GNU	Public	License	(GPL).		Distribution	could	be	

realized	in	three	ways:	copies	of	the	source	program,	pre-built	libraries	or	a	ready-

to-run	instance	of	the	simulator.		

	

1)	Copies	of	the	source	program	could	be	made	available	for	download.		Users	

would	then	compile,	build	and	use	it	on	their	own	computers.		Users	must	first	have	

downloaded	their	own	copies	of	Mathematica	and	SageMath,	and	established	access	

to	the	necessary	physics	databases.	

	

2)	Pre-built	libraries	instead	could	be	downloaded,	eliminating	the	need	for	the	user	

to	compile	and	build	the	source	libraries.		As	in	the	first	option,	users	would	be	

responsible	for	obtaining	their	own	copies	of	Mathematica	and	SageMath	and	

database	access.	

	

3)	With	a	ready-to-run	instance	of	the	simulator,	the	compilation	and	building	of	the	

software	would	be	done	by	ISEC,	relieving	the	user	of	those	jobs.		No	downloading	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 27	

would	be	required	as	an	instance	would	be	accessed	online	through	a	cloud-based	

hosting	arrangement.	

	

The	last	option	requires	that	ISEC	configure	and	qualify	a	cloud	platform	to	support	

a	simulator	environment.		This	would	include	database	access	and	temporary	

storage	of	simulator	results.		ISEC	would	also	be	responsible	for	obtaining	a	multi-

user	Mathematica	license	in	case	the	open-source	option	is	not	chosen.		The	cost	of	

providing	these	resources	via	the	cloud	has	not	been	studied	in	detail,	but	it	could	

be	recouped	by	charging	user	fees	through	the	use	of	tokens	or	other	online	

transactions.	

5.2.4			Support	for	Users	and	Developers	

Simulator	users	throughout	the	space	elevator	community	will	require	access	to	the	

simulator	software	through	a	key	or	download	facility,	access	to	simulator	

documentation,	help	with	installing	and	running	the	simulator,	advice	on	problem	

solving	and	bug	fixing,	and	a	place	to	discuss	issues	and	share	results.	

	

A	professionally	developed	web	site	would	fulfill	these	needs	by	allowing	people	to	

register	as	simulator	users	or	to	subscribe	to	an	online	forum	where	users	and	

experts	could	post	questions	and	comments.		The	web	site	would	also	serve	as	a	

repository	for	documentation.		Web	site	maintenance	and	forum	moderation	could	

be	performed	either	by	volunteers	or	professionals.				

	

It	is	also	possible	that	instead	of	a	dedicated	web	site,	the	above	functions	could	be	

accomplished	by	an	existing	online	service	such	as	GitHub.	

5.2.5			Security	and	Maintenance	

Security	is	a	concern	with	all	modern	software	and	especially	online	applications.	

The	integrity	of	the	simulator	software	must	be	assured	and	the	web	site	must	take	

reasonable	precautions	against	hacking	or	other	attacks.		Following	good	

programming	practices	during	the	development	phase	will	help	with	these	issues,	as	

will	controlling	access	to	the	software,	vetting	users	who	apply	to	join	the	online	

forum	and	testing	the	software	contributed	by	application	authors	before	including	

it	into	the	simulator.		

		

Maintenance	will	include	the	security	and	upkeep	of	the	web	site,	its	forum	and	its	

membership	list.		It	will	also	include	the	periodic	upgrade	of	the	simulator	software	

so	that	it	remains	up-to-date	and	conformant	with	advances	in	computing	

technology.		Simulator	software	and	documentation	should	be	maintained	in	a	

version	control	environment	which	allows	collaborative	development	and	frequent	

updates.		Git	is	a	popular	example	of	such	an	environment.	

5.2.6			Software	Testing	and	Quality	Assurance	

Delivery	of	a	high-quality	space	elevator	simulator	requires	that	mistakes	and	flaws	

be	identified	and	removed	before	the	software	is	released	for	general	use.		This	can	

be	accomplished	by	following	best	practices	during	the	design	phase	and	by	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 28	

extensive	testing	of	pre-release	versions	of	the	software.		Quality	assurance	during	

testing	can	take	the	form	of	unit	testing,	system	testing,	regression	testing	and	

benchmarking.						

	

Unit	testing	checks	small	segments	of	software	which	are	responsible	for	one	or	a	

few	functions	used	in	the	larger	simulation.		In	the	space	elevator	simulator	this	

might	be	the	testing	of	a	function	which	accesses	the	value	of	the	Earth’s	magnetic	

field	from	a	database	and	returns	it	to	the	main	program	in	a	given	coordinate	

system.		Unit	tests	are	numerous	and	typically	developed	concurrently	with	the	

software.		

	

System	tests	check	the	performance	of	large	subsets	of	the	software,	integrating	

many	sub-systems	or	packages	and	subjecting	them	to	tests	which	require	them	to	

work	together.		One	useful	system	test	would	be	to	make	sure	that	the	differential	

equation	integrators	that	predict	the	motion	of	the	space	elevator	tether	do	not	

produce	divergent	results	after	a	long	period	of	computation	time.	

	

Regression	testing	is	used	to	ensure	that	the	performance	of	the	software	does	not	

decline	over	time	as	new	features	are	added	or	other	changes	are	made.		At	regular	

intervals,	for	example	whenever	a	new	version	of	the	simulation	software	is	

released,	the	same	system	test	would	be	run	and	its	results	checked.		Any	drift	of	

test	results	away	from	a	standard	or	optimized	set	of	values	would	flag	a	problem.	

	

Benchmarking	is	critically	important	for	both	development	and	operation	of	the	

simulator.		The	performance	of	any	space	elevator	application	must	be	assessed	

against	standard	data	and	tests	in	order	to	determine	whether	or	not	it	describes	

reality	with	sufficient	accuracy.		Choosing	the	most	discriminating	tests	and	

obtaining	real-world	data	is	a	challenge,	but	the	more	such	tests	run	and	the	larger	

and	more	diverse	the	dataset	compared	to,	the	more	robust	will	be	the	application.	

	

Recommendation	8:	The	simulation	software	should	be	maintained	for	
the	indefinite	future,	with	upgrades,	regular	testing,	security	and	
differing	levels	of	access	for	a	wide	variety	of	users.			
	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 29	

6			Roadmap	for	Development	
	

6.1			Phased	Development	

	

A	space	elevator	simulator	that	meets	all	the	above	requirements	will	be	a	large	

project.		Given	a	small	to	moderate	budget,	development	must	proceed	in	phases,	

starting	with	a	minimally	functioning	simulator,	then	adding	sophistication	and	

functionality	as	time	and	resources	permit.		This	approach	also	allows	the	software	

to	evolve	in	order	to	meet	changing	needs.	

	

Recommendation	9:	Develop	the	simulator	software	in	phases,	adding	
components	as	time	and	resources	permit.	

6.1.1	Development	plan	

A	detailed	development	plan	is	beyond	the	scope	of	this	report,	but	the	following	

sketch	provides	the	main	aspects.		A	phased	plan	would	begin	with	the	development	

or	procurement	of	a	rudimentary	framework	to	which	a	few	simple	space	elevator	

models	and	a	basic	testing	suite	would	be	added.		At	this	point	a	preliminary	version	

of	the	simulator	could	be	deployed	for	testing	and	evaluation.			

	

Pending	successful	testing,	a	few,	more	sophisticated	models	would	be	added.		

These	may	require,	for	example,	detailed	gravitational	and	magnetic	field	databases.	

The	framework	would	thus	need	to	be	extended	so	that	database	access	would	be	

provided	to	the	models.		A	space	elevator	application	developed	outside	of	this	

simulator	should	be	added	to	test	the	ability	of	the	framework	to	accommodate	

diverse	programs.	

	

Finally,	deployment	for	general	user	operations	should	take	place.		At	this	point	it	

would	be	possible	for	users	to	run	existing	applications	and	analyze	results,	or	

develop	new	applications	using	the	framework.	

	

The	major	development	categories	will	be	the	framework,	space	elevator	models	

and	databases.		To	a	large	extent	these	can	be	developed	in	parallel,	with	detail	

added	as	needed.		Some	of	the	developments	required	for	a	mature	simulator	are	

discussed	below.	

6.1.2	Framework	

As	mentioned	above,	the	framework	connects	various	simulator	components	and	

provides	access	to	services.		It	will	provide	access	to	the	Mathematica	and	SageMath	

tools	necessary	to	build	space	elevator	models,	plug-in	slots	so	that	natively	and	

externally	developed	models	can	be	used	within	the	simulator,	standard	interfaces	

which	allow	models	and	applications	to	access	various	physics	databases,	the	

environment	in	which	to	run	space	elevator	applications	and	collect	output	from	

them,	and	other	utilities	such	as	analysis	programs	and	a	scripting	language.					

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 30	

6.1.3	Models	

The	core	of	the	simulator	will	be	a	collection	of	space	elevator	models	of	varying	

complexity.		Based	on	the	use	cases	of	section	2.3	and	the	functional	requirements	of	

section	3.1,	ten	space	elevator	and	environment	models	have	been	identified	to	

carry	out	the	bulk	of	the	simulation	work:	

	

1. a	series	of	inextensible	strings	or	rigid	rods	and	masses	linked	by	swiveling	
springs,	treated	by	series	of	differential	equations	

2. a	continuous,	flexible,	extensible	string	with	attached	masses,	treated	by	
differential	equations	and/or	finite	element	techniques	

3. a	3-D	representation	of	the	tether	volume	using	continuum	mechanics	with	
finite	element	treatment	and	non-linear	partial	differential	equation	solvers	

4. a	heat	conduction	model	of	the	tether	volume	and	material	
5. a	material	model	of	the	tether,	including	internal	structure,	possibly	down	to	

the	molecular	level	

6. a	model	of	the	electric	and	magnetic	fields	in	the	magnetosphere	and	solar	
wind	

7. models	describing	radiation	transport	through	matter	
8. a	model	of	wind	intensity	and	direction	versus	altitude	and	time	
9. an	aerodynamic	model	of	the	tether	and	tether	climbers	
10. a	gravitational	field	model	including	ephemeris	data	and	the	effects	of	Moon,	

Sun	and	planets,	as	well	as	the	effects	of	a	non-spherical	Earth	

	

6.1.4	Databases	

Many	of	the	models	will	require	access	to	publicly	available	databases	to	provide	

environmental	data	such	as	local	gravity,	magnetic	fields	and	radiation	intensity.		

Possible	candidates	are	the	EGM2008	geopotential	database,	the	Fairfield	large	

magnetosphere	database	and	the	AE9	and	AP9	radiation	field	databases.		Facilities	

for	handling	and	accessing	the	sometimes	large	number	of	files	in	a	database	will	

need	to	be	developed.	

6.2			Funding	the	Development	

	

This	study	does	not	include	a	detailed	estimate	of	the	cost	to	develop	the	simulator	

software.		However,	a	rough	estimate	can	be	made	by	assuming	the	work	can	be	

done	in	two	years	by	a	software	architect,	a	software	developer,	a	

documentation/web	page	developer/help	desk	operator	and	a	project	manager.		See	

section	6.3	for	a	proposed	division	of	labor.		Accounting	for	salaries	and	overhead	

this	comes	to	about	$300,000	per	year	for	two	years.		

	

Several	options	for	obtaining	these	funds	have	been	considered,	including	crowd-

funding	campaigns,	such	as	Indiegogo	or	Kickstarter,	funding	from	private	

companies,	such	as	Boeing,	MicroSoft,	or	Amazon	Web	Services,	and	grants	from	

governments	or	universities,	such	as	DARPA	or	National	Science	Foundation.	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 31	

The	study	team	opted	for	the	crowd-funding	approach	as	the	one	most	likely	to	

generate	funds	in	the	shortest	time.			

	

Recommendation	10:	Mount	a	crowd-funding	campaign	to	obtain	
development	funds.	
	

The	cost	of	continued	maintenance,	user	support	and	security	of	the	developed	

software	was	also	not	considered	although	it	is	clear	that	these	expenses	will	not	be	

negligible.		It	is	possible	that	they	can	be	funded	by	user	fees,	donations	and	

subscriptions.	

6.3			Steering	Future	Development	

As	mentioned	above,	a	software	architect,	a	software	developer	and	a	project	

manager	will	be	required.		The	software	architect	and	software	developer	may	or	

may	not	be	ISEC	members,	while	the	project	manager	should	be	an	ISEC	member.		

During	the	first	three	to	six	months,	a	software	architect	will	work	full-time	defining	

the	detailed	structure	of	the	project.		In	the	next	six	to	nine	months	a	software	

developer	will	work	full-time	to	implement	the	design,	completing	80-90%	of	the	

project.		In	the	second	year	the	developer	will	work	half-time	completing	the	

remaining	10-20%	of	the	project,	ironing	out	numerous	bugs,	adapting	the	software	

to	user	requests,	and	so	on.		The	architect	may	be	kept	on	call	during	this	period	at	

part-time.		Also	in	the	second	year	a	half-time	documentation/web	page	

developer/help	desk	operator	will	be	hired.		The	project	manager	will	work	half-

time	for	the	full	two	years	overseeing	the	development.	

	

After	each	of	the	first	two	years,	and	in	subsequent	years,	the	project	should	be	

evaluated	and	modified	as	needed.		This	will	be	the	purview	of	the	simulation	

committee.		Such	a	committee	should	be	appointed	to	guide	development,	allocate	

resources,	request	further	funding	from	ISEC	and	advise	the	project	manager.		ISEC	

board	members	and	the	project	manager	would	be	logical	candidates	to	sit	on	this	

panel.		The	committee	should	take	input	from	simulator	users,	the	project	manager,	

the	software	architect	and	the	software	developer.	

	

Recommendation	11:	Appoint	a	simulation	steering	committee	to	
oversee	and	guide	development.	
	

	The	simulator	will	be	used	for	the	foreseeable	future	in	space	elevator	research,	

development,	deployment	and	operation.		Over	this	time	substantial	changes	to	the	

software	will	be	made	as	it	is	used	and	evolves.		It	will	be	up	to	the	steering	

committee	to	ensure	that	the	evolution	proceeds	in	a	way	that	maintains	quality	and	

versatility.	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 32	

7			Conclusions	and	Recommendations	
	

7.1	Conclusions	

A	software	simulator	is	an	essential	first	step	to	the	development,	construction	and	

operation	of	a	space	elevator.		The	simulator	should	be	designed	to	meet	the	use	

cases	that	arise	within	these	contexts,	be	developed	using	modern	programming	

techniques,	and	use,	where	possible,	existing	software.			

	

In	addition	to	the	simulation	software	itself,	a	collection	of	other	software	must	be	

made	available	to	developers	and	users,	including	Mathematica	and	SageMath,	on	

which	the	simulator	will	be	based,	a	C++	compiler	and	a	Python	interpreter.		These	

must	be	maintained	for	the	foreseeable	future,	with	upgrades,	testing	and	security.	

	

A	wide	range	of	users	will	access	the	simulator,	from	professional	developers	to	

users	in	science	and	engineering	to	casual	gamers.		The	needs	of	this	user	

community	will	certainly	change	over	time,	requiring	changes	in	the	simulation	

software.		Flexible,	modular	and	professional	software	will	therefore	be	required	

and	guidance	for	its	evolution	should	be	provided	by	an	ISEC	simulation	committee.	

	

Funding	the	development	and	maintenance	of	this	project	must	now	be	undertaken.	

Possible	means	include	crowd-funding,	grants	and	user	subscription	fees,	with	

crowd-funding	being	the	most	likely	for	the	time	being.										

	

7.2	Recommendations	

Based	on	these	conclusions,	the	study	team	made	11	recommendations	to	guide	

development	of	the	simulator.	

	

1) A	software	toolkit	should	be	developed	which	can	simulate	the	space	
elevator.	

2) The	simulator	should	serve	and	inform	the	development,	construction	and	
operational	phases	of	the	space	elevator.	

3) The	design	of	the	simulator	software	should	follow	the	Model-View-
Controller	(MVC)	concept.	

4) A	multi-purpose	math/physics	platform	should	be	chosen	upon	which	the	
simulation	software	will	be	built.	

5) Mathematica	should	be	used	as	the	math/physics	platform	of	the	simulator,	
with	SageMath	as	an	open-source	alternative.	

6) The	programming	languages	C++	and	Python	should	be	available	for	any	
simulator	development	which	cannot	be	done	within	Mathematica.	

7) The	core	simulation	software	should	be	written	by	a	professional	
programmer	with	subsequent	development	done	by	ISEC	members.	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 33	

8) The	simulation	software	should	be	maintained	for	the	indefinite	future,	with	
upgrades,	regular	testing,	security	and	differing	levels	of	access	for	a	wide	

variety	of	users.	

9) Develop	the	simulator	software	in	phases,	adding	components	as	time	and	
resources	permit.	

10) 	Mount	a	crowd-funding	campaign	to	obtain	development	funds.	
11) 	Appoint	a	simulation	steering	committee	to	oversee	and	guide	development.

Appendix	A			International	Space	Elevator	Consortium	
	

Who	We	Are	
The	International	Space	Elevator	Consortium	(ISEC)	is	composed	of	individuals	and	

organizations	from	around	the	world	who	share	a	vision	of	humanity	in	space.		

	

Our	Vision	
The	ISEC	vision	is	a	world	with	inexpensive,	safe,	routine,	and	efficient	access	to	

space	for	the	benefit	of	all	mankind.		

	

Our	Mission	
ISEC	promotes	the	development,	construction	and	operation	of	a	space	elevator	

infrastructure	as	a	revolutionary	and	efficient	way	to	space.	

	

	

What	We	Do	
Our	main	functions	include:	

	

• providing	technical	leadership	to	promote	the	development,	construction,	and	

operation	of	space	elevator	infrastructures		

• acting	as	the	“go	to”	organization	for	all	things	space	elevator	

• energizing	and	stimulating	the	public	and	the	space	community	to	support	a	

space	elevator	for	low	cost	access	to	space	

• stimulating	science,	technology,	engineering,	and	mathematics	(STEM)	

educational	activities	while	supporting	educational	gatherings,	meetings,	

workshops,	classes,	and	other	similar	events	to	carry	out	this	mission		

	

	

A	Brief	History	of	ISEC	
The	idea	for	an	organization	like	ISEC	had	been	discussed	for	years,	but	it	wasn’t	

until	the	Space	Elevator	Conference	in	Redmond,	Washington,	in	July	of	2008,	that	

things	became	serious.		Interest	and	enthusiasm	for	a	space	elevator	had	reached	an	

all-time	peak	and,	with	Space	Elevator	conferences	upcoming	in	both	Europe	and	

Japan,	it	was	felt	that	this	was	the	time	to	formalize	an	international	organization.	

An	initial	set	of	directors	and	officers	were	elected	and	they	immediately	began	the	

difficult	task	of	unifying	the	disparate	efforts	of	space	elevator	supporters	

worldwide.		
	

ISEC's	first	strategic	plan	was	adopted	in	January	of	2010	and	it	is	now	the	driving	

force	behind	ISEC's	efforts.		The	Strategic	Plan	calls	for	adopting	a	yearly	theme	to	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 35	

focus	ISEC	activities.		In	2010,	ISEC	also	announced	the	first	annual	Artsutanov	and	

Pearson	prizes	to	be	awarded	for	“exceptional	papers	that	advance	our	

understanding	of	the	Space	Elevator.”		Because	of	our	common	goals	and	hopes	for	

the	future	of	mankind	off-planet,	ISEC	became	an	Affiliate	of	the	National	Space	

Society	in	August	of	2013.		
	

Our	Approach	
ISEC	activities	are	pushing	the	concept	of	space	elevators	forward.		These	cross	all	

disciplines	and	encourage	people	from	around	the	world	to	participate.		The	

following	activities	are	taking	place	in	parallel:	

	

• CLIMB	–	this	peer-reviewed	journal	invites	and	evaluates	papers	and	presents	

them	in	an	annual	publication	with	the	purpose	of	explaining	technical	advances	

to	the	public.		The	first	issue	of	CLIMB	was	dedicated	to	Mr.	Yuri	Artsutanov	(a	

co-inventor	of	the	space	elevator	concept);	and,	the	second	issue	was	dedicated	

to	Mr.	Jerome	Pearson	(another	co-inventor).		CLIMB	is	scheduled	for	publication	

each	July.		Issues	can	be	downloaded	at	www.isec.org.	

	

• Yearly	conference	–	international	space	elevator	conferences	were	initiated	by	

Dr.	Brad	Edwards	in	the	Seattle	area	in	2002.		Follow-on	conferences	were	in	

Santa	Fe	(2003),	Washington	DC	(2004),	Albuquerque	(2005/6	–smaller	

sessions),	and	Seattle	(2008	to	the	present).		Each	of	these	conferences	had	many	

discussions	covering	the	arena	of	space	elevators.		Recent	conferences	have	been	

sponsored	by	Microsoft,	the	Seattle	Museum	of	Flight,	the	Space	Elevator	Blog,	

the	Leeward	Space	Foundation	and	ISEC.		

	

• International	cooperation	–	ISEC	supports	many	activities	around	the	globe	to	

ensure	that	space	elevators	progress	towards	a	developmental	program.	

International	activities	include	coordinating	with	the	two	other	major	societies	

focusing	on	space	elevators:	the	Japanese	Space	Elevator	Association	and	

EuroSpaceward.		In	addition,	ISEC	supports	year-long	technical	studies:	research	

into	a	single	topic	to	ensure	progress	in	a	discipline	within	the	space	elevator	

project.		Reports	from	each	yearly	study	can	be	downloaded	at	www.isec.org.			

	

• The	first	such	study	was	conducted	in	2010	to	evaluate	the	threat	of	space	

debris.		The	second	study,	and	resulting	report,	focused	on	space	elevator	

operations.		The	2013	study	focused	upon	tether	climber	designs.		The	2014	

topic	is	Space	Elevator	Architectures	and	Roadmaps.		There	is	one	topic	chosen	

for	2015;	Earth	Port	Design	Considerations.		The	products	from	these	studies	are	

reports	that	are	published	to	document	progress	in	the	development	of	space	

elevators.	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 36	

	

• Symposia	are	held	and	presentations	made	at	the	International	Academy	of	

Astronautics	and	the	International	Astronautical	Congress	each	year.		

	

• Competitions	–	ISEC	has	a	history	of	actively	supporting	competitions	that	push	

technologies	in	the	area	of	space	elevators.		The	initial	activities	were	centered	

on	NASA’s	Centennial	Challenges	called	“Elevator:	2010.”		Inside	this	were	two	

specific	challenges:	Tether	Challenge	and	Beam	Power	Challenge.		The	highlight	

came	when	Laser	Motive	won	$900,000	in	2009,	as	they	reached	one	kilometer	

in	altitude	racing	other	teams	up	a	tether	suspended	from	a	helicopter.		There	

were	also	multiple	competitions	where	different	strengths	of	materials	were	

tested	going	for	a	NASA	prize	–	with	no	winners.		In	addition,	ISEC	supports	the	

educational	efforts	of	various	organizations,	such	as	the	LEGO	space	elevator	

climb	competition	at	our	Seattle	conference.		Competitions	have	also	been	

conducted	in	both	Japan	and	Europe.		

	

• Publications	–	ISEC	publishes	a	monthly	e--Newsletter,	its	yearly	study	reports	

and	an	annual	technical	journal	[CLIMB]	to	help	spread	information	about	space	

elevators.		In	addition,	there	is	a	magazine	filled	with	space	elevator	literature	

called	Via	Ad	Astra.		

	

• Reference	material	–	ISEC	is	building	a	Space	Elevator	Library,	including	a	

reference	database	of	Space	Elevator	related	papers	and	publications.		

	

• Outreach	–	People	need	to	be	made	aware	of	the	idea	of	a	space	elevator.		Our	

outreach	activity	is	responsible	for	providing	the	blueprint	to	reach	societal,	

governmental,	educational,	and	media	institutions	and	expose	them	to	the	

benefits	of	space	elevators.	ISEC	members	are	readily	available	to	speak	at	

conferences	and	other	public	events	in	support	of	the	space	elevator.		In	addition	

to	our	monthly	e--Newsletter,	we	are	also	on	Facebook,	Linked	In,	and	Twitter.		

	

• Legal	–	The	space	elevator	is	going	to	break	new	legal	ground.		Existing	space	

treaties	may	need	to	be	amended.		New	treaties	may	be	needed.		International	

cooperation	must	be	sought.		Insurability	will	be	a	requirement.		Legal	activities	

encompass	the	legal	environment	of	a	space	elevator	--	international	maritime,	

air,	and	space	law.		Also,	there	will	be	interest	within	intellectual	property,	

liability,	and	commerce	law.		Starting	work	on	the	legal	foundation	well	in	

advance	will	result	in	a	more	rational	product.		

	

• History	Committee	–	ISEC	supports	a	small	group	of	volunteers	to	document	the	

history	of	space	elevators.		The	committee’s	purpose	is	to	provide	insight	into	the	

progress	being	achieved	currently	and	over	the	last	century.		

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 37	

	

• Research	Committee	–	ISEC	is	gathering	the	insight	of	researchers	from	around	

the	world	with	respect	to	the	future	of	space	elevators.		As	scientific	papers,	

reports	and	books	are	published,	the	research	committee	is	pulling	together	this	

relative	progress	to	assist	academia	and	industry	to	progress	towards	an	

operational	space	elevator	infrastructure.		For	more,	visit	

http://isec.org/index.php/about-isec/isec-research-committee	

	

ISEC	is	a	traditional	not-for-profit	501(c)(3)	organization	with	a	board	of	directors	

and	four	officers:	President,	Vice	President,	Treasurer	and	Secretary.		In	addition,	

ISEC	is	closely	associated	with	the	conference	preparation	team	and	other	volunteer	

members.		Address:	ISEC,	PMB	204,	9272	Jeronimo	Rd.	Ste.	107A,	Irvine,	Ca	92618-

1978	inbox@isec.org	/	www.isec.org	

	
	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 38	

Appendix	B			ISEC	Yearly	Study	Reports		
	

All	past	and	current	ISEC	reports	are	listed	here.		They	are	available	for	sale	in	hardcopy	or	

at	no	cost	in	pdf	format	at	www.isec.org.	

	

2010	–	Space	Elevator	Survivability,	Space	Debris	Mitigation	evaluated	the	
threat	of	space	debris	and	proposed	ways	to	reduce	it.	

	

2011	–	Carbon	Nanotube	Developmental	Status	summarized	the	progress	in	
carbon	nanotube	research	in	meeting	space	elevator	needs.	

	
2012	–	Space	Elevator	Concept	of	Operations	focused	on	how	space	elevators	
would	be	organized	and	operated.		

	

2013	–	Design	Considerations	for	the	Tether	Climber	studied	the	physical,	
operational	and	economic	aspects	which	constrain	space	elevator	climber	design.		

	

2014	–	Space	Elevator	Architecture	and	Roadmaps	delineates	the	development	
of	the	space	elevator	as	a	transportation	infrastructure.	
	

2015	–	Design	Considerations	for	the	Earth	Port	examines	the	interface	of	the	
space	elevator	and	the	Earth’s	surface	in	terms	of	a	harbor	and	transportation	hub.		
	

2016	-	Design	Considerations	for	the	Space	Elevator	GEO	Node	and			Apex	
Anchor	considers	the	functional	aspects	of	the	GEO	and	Apex	Anchor	regions	in	
terms	of	the	transportation	infrastructure	and	space	enterprise.	
	
2017	-	Design	Considerations	for	a	Software	Space	Elevator	Simulation	studies	
the	requirements	for	a	software	space	elevator	simulator	and	provides	an	outline	

for	its	development.		

	

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 39	

Appendix	C			Terms	and	Acronyms	
	

Apex	Anchor													The	multi-functional	complex	located	at	the	space	end	of	the	
																																											space	elevator	providing	counterweight	stability	as	a	large	

																																											mass		

	

C++																																A	general-purpose,	compiled	programming	language	with													
																																											object-oriented	features	as	well	as	low-level	memory	

																																											manipulation	features	

	

Climber																							A	payload	carrier	which	ascends	and	descends	the	space	
																																											elevator	tether	

			

Cloud	computing				An	information	technology	that	allows	location-independent	
																																										access	to	shared,	distributed	computing	resources	

	

Earth	Port																		The	multi-functional	complex	located	at	the	Earth	end	of	the	
																																											space	elevator	providing	mechanical	and	dynamical								

																																											termination,	and	port	access	

	

Finite	element										An	approximate	method	for	solving	differential	equations	by	
																																											dividing	complex	volumes	into	small	regions	which	permit	

																																											exact	solutions	

			

GEO																															Geosynchronous	Earth	Orbit	
	

Git																																		A	version	control	system	for	tracking	changes	in,	and	allowing	
																																											collaborative	development	of,	software	files	
	

ISEC																															International	Space	Elevator	Consortium	
	

Java																															A	compiled	programming	language	that	allows	the	
																																											development	of	applications	for	use	across	many	computing		

																																											platforms	

	

Object	library											A	collection	of	compiled	program	units	stored	in	binary	format	
	

Object-oriented							Programming	methodology	centering	around	spaces	in	
																																											computer	memory	and	promoting	modular	software	

																																											development	

	

			

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 40	

Open	source														Non-proprietary	software	in	which	the	source	program	is	open	
																																											to	the	public	

	

Python																									An	interpreted	programming	language	often	used	for	scripting	
																																											and	connecting	diverse	software	applications		

	

Tether																										A	long,	thin	ribbon	of	material	stretching	from	the	surface	of		
																																											the	Earth	though	GEO	to	the	Apex	Anchor,	along	which	the	

																																											space	elevator	climber	travels	

	

User	Interface										The	means	by	which	a	user	interacts	with	a	program,	a	subset	
																																											of	which	is	the	graphical	user	interface	(GUI)		

	 	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 41	

Appendix	D			Brainstorming	Session	Minutes	
	

D.1			Session	at	2015	Space	Elevator	Conference	

In	order	to	collect	ideas	to	inform	the	development	of	a	space	elevator	software	simulator,	

four	 subject	 areas	 were	 discussed:	 customer	 definition,	 project	 scope,	 simulator	 model	

content	and	capabilities,	and	software	infrastructure.		A	summary	of	each	discussion	area	is	

presented	here.	

	

Customers		
To	define	the	customers,	or	users,	of	the	simulator,	it	is	necessary	to	know	who	the	users	

would	be,	how	many	of	them	exist	worldwide	and	how	the	simulator	would	be	used.		As	the	

simulator	would	need	to	be	demonstrated	to	show	its	precision	and	quality,	it	is	likely	that	

the	 first	 users	 would	 be	 space	 elevator	 investors	 and	 the	 people	 who	 are	 seeking	

investment.	 	 The	 next	 users	 would	 be	 the	 academic	 researchers	 and	 early	 commercial	

entities	who	would	perform	R&D	using	the	simulator.		It	may	also	find	a	market	within	the	

gaming	community	where	space	elevators	are	already	in	use	(KSP).				

	

It	is	difficult	to	estimate	the	number	of	worldwide	users,	but	it	is	likely	to	be	small	and	to	

constitute	a	niche	market.	

	

The	 simulator	 is	 likely	 to	 be	 used	 as	 a	 software	 toolkit	 or	 as	 a	 set	 of	 add-on	 tools	 to	 an	

existing	product,	 like	MatLab	or	Ansys.	 	The	 toolkit	 should	not	be	specific	 to	 ISEC	but	be	

useful	to	all	space	elevator	researchers,	allowing	private	applications	to	be	built	on	top	of	it.		

The	software	will	have	to	be	licensed	in	such	a	way	as	to	allow	multiple	users	and	real	time	

analysis	for	tether	operators	and	developers.	

	

Scope		
The	 development	 of	 the	 simulator	 should	 be	 delineated	 at	 the	 outset,	 describing	 what	

should	 be	 modeled	 and	 what	 should	 not,	 and	 what	 its	 ultimate	 applications	 will	 be.	 	 It	

would	be	useful	 to	 first	survey	the	availability	of	existing	proprietary	and	open	modeling	

tools	 in	 order	 to	 avoid	 duplication	 of	 effort.	 	 From	 this	 it	 could	 be	 determined	 what	

properties	the	model	should	have.			

	

The	scope	of	the	simulator	project	can	be	defined	by	its	products,	which	currently	include	

models	of	a	pathfinder	1000	km	tether	experiment,	the	full	tether	deployment	scheme,	its	

operational	 mode	 and	 several	 failure	 modes.	 	 The	 project	 should	 begin	 with	 a	 baseline	

model	and	evolve	to	include	more	detail	and	complex	operations.		The	parameters	of	each	

product	 should	 be	 defined	 beforehand.	 	 Testing	 and	 performance	monitoring	 should	 be	

included	 at	 each	 major	 step,	 with	 periodic	 benchmarking	 against	 other	 application	

software.		

	

Management	 oversight	would	 be	 required	 to	 ensure	 that	 the	 project	 stays	within	 scope.		

For	this	a	Work	Breakdown	Schedule	(WBS)	should	be	developed	to	map	out	the	work	and	

project	timeline.		This	will	be	essential	for	determining	project	costs.					

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 42	

	

Model	Content			
In	addition	to	the	physical	inputs	listed	above,	the	model	should	include	all	known	external	

and	 internal	 influences	 on	 the	 tether	 such	 as	motion	 at	 the	 Earth,	 GEO	 and	 apex	 nodes,	

gravitational	 effects	 of	 the	 Sun	 and	 Moon,	 electromagnetic	 interactions	 with	 the	

magnetosphere,	internal	and	external	friction,	heating	and	cooling	due	to	the	tether	moving	

in	and	out	of	Earth’s	shadow,	solar	and	atmospheric	winds,	multiple	climbers	and	thrusters	

on	climbers.	

	

The	ability	to	model	various	tether	deployment	scenarios	and	the	deployment	of	payloads	

at	 various	 points	 along	 the	 tether	 is	 essential.	 	 The	model	 should	 in	 general	 predict	 the	

response	 to	 forces	at	any	point	along	 the	 tether	which	may	be	due	 to	oscillations,	debris	

strikes,	tides,	and	so	on.		It	should	also	be	able	simulate	the	application	of	counter-forces	in	

order	 to	 damp	 oscillations	 and	 correct	 for	 the	 effect	 of	 impacts	 or	 other	 effects.	 	 These	

calculations	 should	 be	 done	 sufficiently	 quickly	 that	 they	 can	 be	 used	 for	 real-time	

corrections	of	tether	motion.	

	

As	the	tether	will	likely	be	constructed	from	multiple	materials,	the	model	should	be	able	to	

simulate	the	internal	stresses	due	to	composite	structure.		

	

Any	detailed	model	should	include	error	logging	and	run-time	status	reporting.	

System	control	models	should	contain	links	to	metrology	data	in	order	to	allow	feedback.		

Simplified	models	which	have	analytical	solutions	should	be	used	to	provide	sanity	checks	

and	 a	 baseline	 understanding	 of	 more	 complex	 models.	 	 In	 all	 cases	 the	 mathematical	

stability	of	the	model	must	be	guaranteed.		

	

It	 is	unlikely	 that	 the	 initial	model	will	 contain	all	 the	above	requirements,	 so	any	model	

developed	 must	 be	 modular	 and	 extensible.	 	 This	 will	 allow	 new	 requirements	 to	 be	

implemented	as	necessary	and	will	help	the	project	remain	within	scope.	

	

Infrastructure	
Software	 infrastructure	must	be	developed	 to	 support	 the	development	and	operation	of	

the	space	elevator	simulator.		It	should	be	1)	multi-platform,	2)	multi-developer,	3)	multi-

user	and	4)	distributed.	

	

Item	 1	 requires	 that	 all	 software	 should	 run	 on	 multiple	 computer/operating	 system	

combinations.		Modern	computer	architectures	use	multithreading,	parallel	processing	and	

Graphics	 Processing	 Units	 (GPUs).	 	 Because	 any	 detailed	 model	 will	 be	 computing-

intensive,	its	software	should	take	advantage	of	these	features.	

	

Item	 2	 requires	 that	 all	 space	 elevator	 programmers	 have	 simultaneous	 access	 to	

development	and	 testing	 tools,	which	 include	compilers	or	 interpreters	 for	programming	

languages	such	as	C++	and	Java,	scripting	 languages	such	as	Python	and	various	profiling	

tools	 to	 optimize	 and	 test	 software.	 	 All	 software	 and	 software	 documentation	 should	

reside	 in	 a	 versioning	 repository,	 such	 as	GitHub	or	Perforce	Helix	Cloud,	which	 enables	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 43	

collaborative	 software	 development,	 provides	 backup	 and	 access	 to	 all	 past	 versions	 of	

software,	and	release	management.		

	

Item	3	allows	simultaneous	access	to	several	users	or	operators	of	the	simulator.		Easy	and	

efficient	 use	 requires	 a	 good	 user	 interface	 and	 professional-grade	 visualization	 so	 that	

model	 performance	 can	 be	 quickly	 monitored	 and	 modified.	 	 Analysis	 tools	 including	

histogramming	and	plotting	should	also	be	provided.		All	software	should	be	collected	in	a	

toolkit	or	library	of	modules	which	uses	a	web	Application	Programming	Interface	(API)	to	

ease	 their	 integration	with	 other	 applications.	 	 The	 toolkit	 should	 be	 easy	 to	 install	 and	

provide	 an	 embedded	 user	 guide.	 	 Online	 help	 and	 training	 would	 also	 be	 useful.	 	 All	

software	developed	should	be	open	whenever	possible.		

	

Item	4	acknowledges	 that	 in-house	computing	 farms	and	storage	disks	are	a	 thing	of	 the	

past.	 	 The	 increased	 availability	 of	 cloud	 computing	 and	 data	 storage	 from	 commercial	

sources	 is	 becoming	 more	 and	 more	 affordable	 and	 avoids	 the	 necessity	 of	 hardware	

maintenance.		Seti@Home	is	another	example	of	how	significant	computing	power	may	be	

obtained	at	low	cost.		Because	data	will	be	shared,	it	will	be	necessary	to	adopt	a	standard	

format	for	data	storage;	this	could	be	the	simple	Comma	Separated	Value	(CSV)	format	or	

the	sophisticated	HDF5	format.		

	

Attributes		
For	 the	purpose	of	project	definition,	 the	desired	attributes	of	 the	simulator	applications	

and	the	simulator	software	infrastructure	were	extracted	from	the	above	summaries.		The	

software	 should	 be	 inclusive	 of	 all	 known,	 non-negligible	 physics	 effects,	mathematically	

stable,	physically	accurate,	capable	of	real-time	response,	testable	and	extensible.	

	

D.2			Session	at	2016	Space	Elevator	Conference	

Four	topics	were	discussed:	what	must	be	simulated,	the	software	tools	required	to	carry	

out	all	the	simulations,	testing	the	simulations	and	integrating	different	software	tools	into	

a	system.	

	

What	must	be	simulated
Any space elevator model must be flexible and modular. It must provide a common,
user-friendly interface which accommodates different models and allows comparative
testing of models. Models and interface should have selectable parameters.
Several	areas	of	simulation	were	identified:	

	

• basic	tether	behavior,	including	3-D	modeling	of	variable	linear	density,	elasticity,	

longitudinal	and	transverse	oscillations,	their	damping	and	the	forces	they	cause	in	

all	components	of	the	system	

• tether	dynamics	factors,	which	include	radiation	and	solar	activity,	earthquakes,	

tidal	forces	from	Moon,	Sun	and	planets,	Earth	nutation,	atmospheric	and	ocean	

forces,	tether	material	properties	and	payloads	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 44	

• non-dynamic	factors,	such	as	intermodal	transportation,	space	traffic	control	and	

simulation	of	the	swarm	of	vehicles	around	GEO,	space	debris,	life	support,	

structural	design,	communication	and	environmental	and	political	simulations	

concerning	location	of	Earth	Port	and	failure/disaster	scenarios	

	

	

	

Software	tools	
What	is	expected	of	the	tools	and	models	must	first	be	clearly	defined.		When	this	is	done,	a	

survey	of	available	tools	should	be	performed	in	which	apples-to-apples	comparisons	

between	tools	are	made.	

Possible	tools	include:	

	

• modeling	tools	and	physics	solvers:	Mathematica,	MatLab,	R,	Maple	

• general	tools:	API	(application	programming	interface)	or		SDK	(software	

development	kit),	GUI	(graphical	user	interface),	IDE	(integrated	development	

environment)	such	as	Eclipse,	QT	Designer,	QT	Creator	or	Visual	Studio	

• compilers/interpreters:	strongly	typed	languages	preferred	like	Java,	C++	

• wrappers	to	allow	any	component	to	fit	into	a	framework	

• software	from	other	domains	such	as	video	games,	environmental	modeling	and	

transportation	modeling	could	be	leveraged	

	

Policy	and	conformity	proposals	were	made.		Use	of	proprietary	software	should	not	be	

shunned	but	legal	aspects	of	sale	and	usage	must	be	considered.		The	open	software	model	

should	be	followed	as	much	as	possible	consistent	with	the	previous	point.		There	should	

be	freedom	to	use	different	tools	within	common	framework.		Note	that	DARPA	announced	

they	are	requiring	use	of	a	common	tool.		Should	a	common	language	or	programming	style	

be	enforced?		An	ISEC	simulation	guru	should	be	appointed.	

	

Finally,	a	number	of	unanswered	questions	were	raised.		Should	all	software	be	submitted	

to	the	shared	system,	and	does	this	raise	a	conflict	with	propriety	issues?		Should	source	

code	be	demanded	for	model	submissions?		Should	a	top/down	or	bottom/up	modeling	

approach	be	followed?	

	

Testing		
The	simulation	must	be	tested	in	several	ways,	including	comparison	to	experiment,	

comparison	to	models	and	quality	assurance.		There	must	be	a	mechanism	to	identify	

differences	in	models	that	are	expected	to	give	similar	results	and	a	way	to	resolve	

discrepancies	between	them.		Benchmarking,	model	comparison	and	quality	assurance	

were	identified	as	major	areas	of	testing.	

	

Benchmarking	is	the	comparison	of	simulation	to	physical	setups,	which	could	include	

tethers	in	mineshafts,	large	vacuum	facilities	or	vacant	amusement	parks,	tests	in	wind	

tunnels,	high	altitude	balloon	or	rocket	tests,	Foucault	pendula,	and	on-orbit	tests.	

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 45	

Comparison	involves	evaluating	the	features	and	precision	of	each	model	and	deciding	

which	one	best	corresponds	with	reality,	including	analysis	of	experiment	metrology	and	

resolving	differences	between	models.		Evaluation	may	also	include	trade	studies	involving	

accuracy	vs.	required	CPU	time.		Quality	assurance	involves	testing	the	software	itself	by	

checking	for	bugs,	unit	and	integration	testing	and	regression	testing.		Most	of	the	testing	

should	be	automated	and	may	possibly	be	done	using	crowd	processing	such	as	Galaxyzoo	

and	SETI@Home.	

System	integration	and	framework	
A	software	framework	is	analogous	to	an	electrical	bus	to	which	components	may	be	

attached	and	communicate	with	one	another.		The	many	software	modules	required	for	

simulation	will	need	to	be	organized,	maintained	and	made	to	work	together	by	the	

framework.		General	purpose	frameworks	already	exist,	such	as	USQUE.		

The	framework	should:	

	

• provide	a	unified	modeling	framework,	with	a	consistent	architecture;	this	would	

mitigate	some	of	the	complexity	due	to	different	systems	interacting;		

• provide	access	to	many,	possibly	large,	databases	as	inputs	to	models	and	possibly	

provide	a	single	data	API	for	these;	

• provide	a	unified	GUI;		

• allow	for	modular,	object-oriented	software	so	that	many	different	space	elevator	

models	can	be	accommodated;	

• support	a	common	format	for	data	input/output	to	encourage	collaborative	

development;		

• be	robust	and	performant:	it	will	be	necessary	to	do	long-term,	real-time	

simulations;	

• be	able	to	run	on	the	chosen	hardware;	no	problems	with	existing	hardware	options	

were	identified.	

	

Project	management	will	be	a	necessary	component	of	the	simulation	effort.		This	will	

require	expertise	and	collaborative	effort.		Outreach	to	interested	parties	is	recommended	

as	is	creating	a	presence	for	ISEC	at	software	development	conferences.		It	may	be	useful	to	

hire	a	software	professional	to	assist	with	or	manage	the	project.			

Agile	development	methodology	should	guide	the	work	and	keep	development	focused	on	

achievable	goals.		Curation	of	contributed	software	can	follow	existing	examples	in	the	

open-source	software	community	in	which	there	is	a	software	repository	with	oversight	for	

contributions.	

	

D.3			Session	at	2017	Space	Elevator	Conference	

This	session	addressed	four	topics	concerning	the	space	elevator	simulation	software:	

features	a	user	would	like	to	see	and	how	it	would	be	used,	features	space	elevator	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 46	

application	developers	would	like	to	see,	deployment	and	management	of	the	space	

elevator	software	and	funding	space	elevator	software	development.	

	

	

Simulator	Features	a	User	Would	like	to	See	
We	see	this	as	a	modular	program	that	starts	out	with	only	what	we	anticipate,	but	expands	

over	time	as	users	contribute	requests	for	changes/additions	to	the	software.		

	

When	opening	the	software,	the	user	should	have	the	option	of	language,	time	zone,	and	

region	in	accordance	with	ISO	standards	(https://www.iso.org).		The	user	should	then	be	

able	to	choose	the	mode	of	use,	i.e.,	game	play,	educator,	student,	customer,	engineer,	etc.		

	

An	online	tutorial	would	introduce	new	users	to	the	software	and	guide	them	through	the	

available	menus.		A	demo	mode	would	also	be	provided	in	which	the	user	could	watch	a	

standard	simulation	to	get	an	idea	of	what	the	software	is	capable	of.	

	

After	running	a	unique	scenario,	the	user	should	have	the	option	of	saving	the	data	for	

himself,	or	uploading	it	to	a	library	within	the	simulation	site	to	share	with	other	end	users.	

Those	users	could	then	watch	it	for	new	ideas	of	what	the	software	is	capable	of.		This	

option	should	only	be	for	the	serious	user.		

	

Not	every	user	will	have	the	same	experience;	what	is	seen	depends	on	the	user.	Serious	

users	will	have	access	to	more	complicated	scenarios	than	the	casual	user	on	the	site.	

Paying	customers	will	get	more	features	than	a	gamer	while	an	engineer	on	the	

development	team	will	have	access	to	every	feature	available	in	the	latest	update.		

	

A	gamer	version,	similar	to	the	existing	program	available	at	kerbalspaceprogram.com	

would	be	fun	or	useful	for	education.		Simpler	versions	(Simulation	Lite)	could	be	

downloaded	for	use	on	tablets	or	even	phones.		It	could	be	shared	in	a	multi-user	mode	for	

teams.	

	

The	system	should	be	user-friendly	and	intuitive.		It	needs	to	be	compatible	with	Windows,	

Macintosh,	and	Linux	systems	for	a	wide	range	of	users.		The	file	format	should	be	fairly	

universal	for	uploading	and	downloading	scenarios	(perhaps	JSON).	

	

A	feedback	system	needs	to	be	included	so	that	the	software	can	be	updated,	as	stated	

above.		Users	should	be	able	to	submit	requests	for	updates	or	changes	to	the	program	to	

suit	needs	that	were	not	previously	anticipated.		The	backlog	of	requests	should	be	visible	

so	that	users	may	add	a	“me	too”	and	vote	for	specific	features.		Moderators	should	be	able	

to	consolidate	similar	requests	together	to	prevent	duplication	with	minor	variation.		

Online	servers	could	also	provide	a	reward	feedback	system	where	users	who	upload	their	

scenarios	can	see	how	many	times	their	scenario	is	viewed.		The	software	could	also	give	

the	option	of	feedback	so	that	viewers	can	rate	the	scenario.	

	

The	primary	use	for	the	software	will	be	for	developing	the	space	elevator	to	prepare	it	for	

deployment	and	launch.		We	anticipate	it	being	used	by	architects,	designers,	operations	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 47	

managers,	accountants,	dispatchers/schedulers,	maintenance	personnel,	emergency	

response	crews,	safety	officers	and	perhaps	more.	

	

A	model	that	could	be	followed	(so	as	to	not	re-invent	the	wheel)	is	called	Systems	Tool	Kit.	

Formerly	called	Satellite	Took	Kit,	it	was	expanded	multiple	times	to	allow	engineers	and	

scientists	to	perform	complex	analyses	of	ground,	sea,	air,	and	space	assets.	

	

Analysis	tools	should	be	provided	so	that	the	results	of	a	simulation	can	be	understood	and	

displayed	in	various	formats,	such	as	Gantt	charts,	bar	graphs,	pie	charts,	spreadsheets,	

data	heat	maps,	time	series,	playback	time	sliders	with	various	scales	(sec,	minute,	hour,	

day,	etc.)	and	more	:	http://guides.library.duke.edu/datavis/vis_types		

	

The	software	could	be	similar	to	a	flight	simulator	in	that	the	simulation	could	be	portrayed	

in	3-D,	virtual	reality	or	mixed	reality.	

	

Features	a	Space	Elevator	Model	Developer	Would	Like	to	See	
The	simulation	software	should	be	developed	in	an	iterative	manner.		The	process	should	

be	broken	down	into	modules	which	are	developed	and	tested	separately	before	being	

combined	into	the	entire	simulator.		Simulations	should	be	compared	to	real-world	data.	

	

Desired	features	include	identification	of	owners	of	software	so	that	they	may	be	contacted	

for		any	questions,	task	coordination	software,	identification	of	subject	matter	experts	

(software,	domain,	etc.),	using	them	as	a	bridge	from	high	level	requirements	to	technical	

design,	and	a	means	to	identify	results	that	are	not	within	some	bounds	of	known,	actual	or	

expected	results.	

	

Many	software	tests	will	be	required.		There	will	be	a	need	for	test	data	sets	and	known	

outputs,	small	scale	(or	unit)	tests,	larger	scale	(or	integration)	tests,	“domain	relevant”	

testing	(different	tests	at	different	places)	and	validation	of	low-level	pieces	of		software.	

	

Communication	with	software	developers	will	be	needed.		Some	ways	to	do	this	include	

collaborative	use	fora	(HipChat,	e-mail	distribution	list,	or	something	else),	virtual	

collaboration	tools	(Slack,	GoToMeeting,	WebEx)	and	perhaps	mandatory	regular	meetings	

for	regular	communications.	

	

Concept	of	Operations	for	Space	Elevator	Software	
The	simulation	software	will	have	to	be	run	efficiently,	maintained,	distributed	and	

secured.		Issues	of	workflow	and	allocation	of	computing	resources	need	also	to	be	

considered.		Settling	these	issues	will	result	in	a	concept	of	operations.		

	

One	of	the	first	issues	to	settle	is	who	will	use	it.		Users	will	be	ISEC	members,	customers,	

educators	and	students,	and	casual	observers	and	gamers.	

	

ISEC	members	would	need	more	features	than	say,	a	gamer.		The	customer	will	need	to	

know	whether	or	not	the	company	can	afford	to	use	the	Space	Elevator	and	can	they	should	

be	able	to	identify	that	they	cannot	afford	NOT	to.		The	simulator	should	have	a	cost	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 48	

analysis	to	compare	to	an	incremental	standard	rocket	launch	model.		A	customer	will	need	

certain	parameters,	but	definitely	not	all	of	the	available	ones.		Risk	factors	can	be	given,	

but	the	customer	should	not	have	to	concern	himself	with	the	same	parameters	as,	for	

instance,	a	Space	Elevator	Safety	Officer.	

	

To	be	sure	that	only	serious	users	have	access	to	the	servers	that	contain	the	library,	

the	software	should	verify	user	identity	and	the	company	or	organization	represented.		

Abusers	of	this	access	can	be	downgraded	by	system	moderators.	

	

A	distribution	model	for	the	software	would	be	to	make	it	accessible	via	the	internet	with	

both	online	and	downloadable	versions	which	would	depend	on	usage	and	computer	

capabilities.			

	

Documentation	in	the	form	of	tutorials	could	be	offered:	light	online	versions	for	casual	

users	and	downloadable	versions	for	heavy	compute	operations.	

	

Workflow	issues	include	building	the	software,	loading	it,	dealing	with	and	understanding	

failures,	maintenance	and	security.		

	

Distributed	computing	must	be	considered.		This	included	server	farms,	such	as	AZURE,	

and	compute	farms	(perhaps	GPUS).		seti@home	is	an	example.	

	

Managing	and	allocating	computer	resources	will	be	an	important	task.		This	could	be	done	

using	tokens,	which	would	come	with	a	fee	for	private	use.		Perhaps	some	tokens	would	be	

free.	

	

Funding	the	Simulation	Software	
There	is	already	significant	software	development	occurring	for	modeling	tethers	and	

space	elevators.		Most	of	this	software	is	being	developed	by	researchers	to	support	

specific	projects.		Early	progress	could	be	made	by	better	coordination	of	these.		A	first	big	

win	could	be	simply	storing	the	source	code	in	a	central,	browse-able	repository	online.		

The	first	option	for	developing	a	monolithic	software	simulator	would	be	to	use	grant	

money	from	government	research	programs.		A	grant	writer	could	be	hired	to	craft	the	

proposal.		Usually	the	fee	is	a	small	up-front	payment	and	a	percentage	of	the	award.		For	

example,	it	could	be	$3,400	and	10%.		

We	could	also	go	over	non-governmental	grants.		This	could	include	foundations,	NGOs,	

and	non-profits.		It	could	also	include	large	corporations,	especially	aerospace	companies.		

	

We	could	create	two	projects,	a	game	and	a	simulator.		The	game	would	be	funded	by	

investment	and	produce	a	profit.		The	profits	from	the	game	would	in	turn	fund	the	

simulator	software	development.		The	game	could	also	be	used	for	outreach	and	education,	

something	that	Kerbal	Space	Program	does	well	for	spaceflight	in	general.		

	

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 49	

A	powerful	software	development	method	is	the	Open	Source	Software	(OSS)	model.		Large	

teams	of	mostly	volunteers	develop	complex	software	that	is	used	for	personal	and	

commercial	purposes.		Examples	include	Linux,	Firefox,	and	KiCad.		This	usually	requires	a	

core	team	that	is	paid	by	the	sponsoring	body,	e.g.	Mozilla	hires	a	core	team	to	develop	

Firefox.		However,	much	of	the	work	can	be	done	by	volunteers.		This	could	allow	us	to	

leverage	small	resources	into	a	high	quality	software	program.		As	the	software	becomes	

more	capable,	researchers	would	be	incentivized	to	contribute	to	the	existing	project	

rather	than	developing	their	own,	making	the	software	more	desirable	and	creating	a	

virtuous	cycle.	

Representatives	from	ISEC	could	pitch	companies	and	individuals	at	trade	shows,	other	

conferences,	or	even	something	like	South	by	Southwest	(SXSW)	to	create	this	software	of	

their	own	initiative.		

	

Similarly,	we	could	pitch	researchers,	who	could	in	turn	acquire	grant	money	to	develop	

the	software.

International	Space	Elevator	Consortium	 ISEC	Position	Paper	2017-1	

	

	 50	

	

		

		

Front cover: notional graphical user interface
showing Earth in its magnetosphere and the
space elevator with oscillation positions
calculated by the simulator	

6543767813879

ISBN 978-1-387-65437-6
90000

A Space Elevator Simulator 	
	

Open source, modular software to provide:	
	

Calculations of space elevator dynamics	
	

Standard benchmarks and space elevator models	
	

Access to geophysical and astrophysical databases	
	

Plug-ins for external space elevator models	
	

Flexibility to meet evolving simulation needs 	

